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ABSTRACT

Most of the theories on solids were built upon the assumption that the coulombic

repulsion between electrons is negligible. But certain materials tend to show devia-

tion from the predicted behaviour because of their strong correlation. Such materials

demanded further study. Hubbard model is one such model which takes into account

the lattice interactions between electrons. It was helpful in explaining about the Mott

insulators, which were expected to be conductors, but showed an insulating behaviour.

The model is written in terms of fermion creation and annihilation operators, similar

to those discussed in quantum harmonic oscilllator. We study the Hamiltonian of the

model in detail and make an attempt to describe a single site. Green’s funciton for the

model is studied ad analysed.

An object that crosses the event horizon of a black hole is fully absorbed and hence

the information contained in it is lost forever. But according to quantum mechanics,

information can neither be created nor be destroyed. This information paradox could

be solved if we consider that all the information about the matter and energy within

the three dimensional volume of a black hole is encoded as a hologram upon its two

dimensional surface, the event horizon. This is termed as the holographic principle.

Sachdev Ye Kitaev model emerged as a model for holography. It deals with random

infinite-range interactions including Majorana fermions. The model is studied in detail

and the Green’s function for the model is determined and analysed.
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Chapter 1

Introduction

The physical systems that we see everyday are ensembles of free particles. Most of the

models used to explain the behaviour of solids asssume that the Coulomb energy of

electrons is much smaller than their kinetic energy, and hence can be neglected. This

suffices the description of numerous materials such as simple metals, semiconductors and

insulators. But materials with open d- and f- electron shells, where electrons occupy nar-

row orbitals have properties that were harder to explain. In transition metals, electrons

experience strong Coulomb repulsion due to their spatial confinement.The influence of

an electron on the others is much pronounced here.

1.1 Strongly correlated systems

Strongly correlated materials form a class of heavy fermion compounds that include

insulators and electronic materials. They exhibit unusual, yet technologically favourable

electronic and magnetic properties such as metal-insulator transitions, half-metallicity

and spin-charge separation. Many transition metal oxides having incompletely filled

d- or f- electron shells with narrow energy bands fall under this category. They have

electronic structures that are neither simply free-electron-like nor completely ionic, but

a mixture of both. The interplay of d and f electrons’ internal degrees of freedom-spin,

charge, and orbital moment show eccentric ordering pheonomena at low temperatures.
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This interplay makes strongly correlated electron systems extremely sensitive to small

changes in external parameters, such as temperature, pressure, or doping. The dramatic

effects can range from huge changes in the resistivity across the metal-insulator tran-

sition in Vanadium Oxide and considerable volume changes across phase transitions in

actinides and lanthanides, to exceptionally high transition temperatures in supercon-

ductors with copper-oxygen planes. In materials called heavy fermion systems, mobile

electrons at low temperature behave much massive than a free electron in a simple metal.

Some of them display a very large thermo electric response while others are sensitive to

magnetic fluctuations.

1.2 The theoretical challenge

Band theory, which captures the delocalized nature of electrons in metals, has been

successful in explaining the behaviour of materials with weakly correlated electrons.

Fermi liquid theory provides a conceptual picture of the spectrum of excitations in a

solid which describes the transport of conduction electrons in momentum space. Failure

of band theory was first noticed in insulators such as Nickel oxide and Manganese oxide,

which have relatively low magnetic ordering temperatures, but large insulating gaps.

N. F. Mott illustrated that those insulators are better understood from a real-space

picture of the solid as a collection of localized electrons bound to atoms with open

shells.Adding and removing electron leaves it in an excited configuration. Since the spin

and orbital angular momentum of the remaninig atoms scatter the excited configura-

tions, these states propagate through a crystal incoherently and broaden to form bands,

called the lower and upper Hubbard bands.

The richness of phenomena and extreme sensitivity to microscopic details make their

experimental and analytical study difficult. Many models have been proposed to account

for various phenomena that occur as a result of strong correlation. One of the simplest

models of correlated electrons is the Hubbard model.
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1.3 Operators

An operator maps vectors from one space V to vectors in another space W.

Mathematically, Â : V→W.

In linear algebra, the operator is a matrix operator. In Hilbert space, it can be a

differential or integral operator. In Dirac’s notation,

|g〉 = A |f〉

1.3.1 Creation and Annihilation operators

In linear algebra, the creation and annihilation operators, collectively termed as

ladder operators, increment or decrement a quantum number describing the state of a

system. These operators are used in the formalism of quantum harmonic oscillator.

The quantum harmonic oscillator is characterised by the Hamiltonian

Ĥ =
P 2

2m
+

1

2
mω2x2

We introduce the creation and annihilation operators

a =
1√

2mω~
(mωx− ip) (1.1)

a† =
1√

2mω~
(mωx+ ip) (1.2)

The operators satisfy the commutation relation[
a, a†

]
= 1 (1.3)

This gives rise to an infinite-dimensional Hilbert space spanningstates |n 〉 for n=0,1,2,....∞

[a,H] = a[
a†, H

]
= −a†

The occupation number is defined as

n = a†a

We have the relations:

[n, a] = −a[
n, a†

]
= a†
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1.3.2 Fermion Operators

Analogous to the harmonic oscillator operators, we have fermion creation and annihi-

lation operators. In Hubbard model, there is a set of creation and destruction operators

cjσ and c†jσ, where the index j refers to the spatial lattice site and σ refers to the electron

spin (up or down).

First, we describe a vaccuum state, denoted by |0〉, which contains no fermions and

is normalised.

〈0|0〉 = 1

Then c†jσ is defined as to create a fermion of spin σ in the j-th single particel state by

c†jσ|0...0〉 = |0...010...0〉

where the numbers inside the ket indicate the occupation number of the various single

particle states, and 1 is on the jth site.

Pauli’s exclusion principle prevents the occurence of two fermions in the same state, i.e.,

c†jσ|0...010...0〉 = 0

The anti commutation relation is given by

{A,B} = AB +BA (1.4)

These operators obey the anti commutation relation

cjσc
†
lσ = δj,lδσ,σ′ (1.5)

The following relations also hold true for the fermion ladder operators

{â, â} = {â†, â†} = 0 (1.6)

i.e.,

ââ = â†â† = 0 (1.7)
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1.4 The Many-Body Problem

The systems that we have in the physical world like electrons in a metal, molecules

in a liquid,etc,.. comprise of many particles interacting with each other, giving rise to

different phenomena. But, the particles in intricate motion are difficult to study. Hence,

we make attempts to bring them to a single body problem just like two masses connected

by a spring are treated as a single body by considering the centre of mass. But converting

every physical problem to single body problem is practically impossible. So, we need to

equip ourselves with techniques for handling many-body problems efficiently.

Many-body problem may be defined as the study of effects of interaction between

bodies on the behaviour of a many-body system. It deals with general methods applica-

ble to all many-body systems. To solve a many-body problem, we need to understand

the problem first. The essential part is that there should be many bodies interacting

with each other. A system of non-interacting bodies will not come under many body

problem, rather it constitutes many one body problems. These interactions play a major

role in determining the physical aspects of the system.

In many cases, many-body problems were solved by ignoring the interactions. An-

other approach used was the canonical transformation technique, which involves trans-

forming the basic equations of the many-body system to a new set of coordinates in

which the interaction term becomes small. These were to an extent, able to explain

the behaviour of the system. But, the lack of a systematic method kept the many-body

problem in its infant stage well up into 1950s. Emergence of quantum fiels theory opened

new doors to deal with many-body problems.

1.5 Quasi Particles

Quantum field theory provided a new simple picture of matter in which systems

of interacting real particles are described in terms of approximately non-interacting

fictitious bodies called ’quasi particles’ and ’collective excitations’. Consider two masses

connected by a spring as shown in the figure.

Our system consists of two strongly coupled real bodies. The motion of each mass

5



Figure 1.1: Two body system

is complicated due to interaction. We break up the complicated motion into two parts:

motion of the centre of mass and motion about centre of mass. Centre of mass is an

independetn body of mass 2m, and the latter part has a reduced mass of m
2

. Thus, the

system acts as if it was composed of two non-interacting fictitious bodies: centre of mass

body and the reduced mass body.

The concept of quasi particle arises from the fact that when a real particle moves

through the system, it pushes or pulls on its neighbours and thus becomes surrounded by

a ’cloud’ of agitated particles. The real particle plus its cloud forms the quasi particle.

The presence of cloud makes the properties of quasi particle different from that of a

real particle. The quasi particle has an effective mass and a lifetime. It is in an excited

energy level of the many-body system, hence referred to as ’elementary excitation’ of

the system.

A model used to describe many-body effects in metalsis the electron gas model. It

consists of a box containing a large number of electrons interacting with each other via

Coulomb force. A uniform, fixed, positive charge background is present in the system

to keep the whole system electrically neutral. In the ground state, electrons are spread

out uniformly. Suppose we shoot a single, well-localised electron into the electron gas.

The coulombic repulsions keep the other electron away from the new electron such that

an empty space is created near the extra electron. The empty space has positive charge

due to the background charge. Thus, the extra electron has lifted out electrons from the

charge distribution in its vicinity, thereby creating holes.

This gives a picture of an extra electron surrounded by a cloud of constantly changing

holes and lifted out electrons. This combination is termed as quasi electron. The positive

hole cloud shields the negative charge of the electron. Hence, two quasi electrons whose

hole cloud do not overlap, interact weakly due to shielding. This is why metals generally

behave as independent of electron-electron interaction.

6



Quasi particles have an energy different from that of real particle due to the cloud

surrounding it.

E =
p2

2m∗
where m* is the effective mass.

Equasi − Ereal = Eself (1.8)

where Eself is the self energy, which is the energy that a particle has due to the changes

it caused by itself in its environment.

7



Chapter 2

Scope and Objectives

2.1 Scope

In most of the theories for physical system, we neglect the Coulombic repulsion be-

tween electrons, for convenience. But we see a deviation form the expected behaviour

due to the presence of these interactions. Hence the models which take into account the

repulsion between electrons is mandatory to have a full understandng of the behaviour

of solids. Another criterion we follow in large is the nearest neighbour interactions.

Although such models were successful, it is a vague approximation to make. So devel-

opment of models which can explain interactions at a distance along with the coulombic

repulsion can provide a major breakthrough in solid state physics.

It is believed that all information of an object that enters a black hole is lost forever.

But, this is in contradiction with the basic law that information cannot be destroyed or

created. This paradox could be solved by the holographic principle, which states that

information in a higher dimension can be encoded as a hologram in lower dimension. A

model for the same needed to be devised. But, in many theories that explain physical

phenomena, we restrict the interactions to nearest neighbours. But it is not the case

with the real systems. So, a model should be devised which can explain the system with

long range interactions.

8



2.2 Objectives

• To get familiar with the fermionic creation and annihialtion operators

• To study the Hubbard model in detail

• To study in detail about the half filling of Hubbard model

• To understand the behaviour of Mott insulators

• To solve single and double site Hubbard model both analytically and present it

graphically.

• To understand the treatment of many-body problems.

• To acquire an in-depth knowledge about Green’s function and diagrammatic meth-

ods.

• To study about the principle of holography.

• To study about SYK model and its hamiltonian.

• To find the Green’s function for both the models.

9



Chapter 3

Hubbard Model

3.1 The Model and its Hamiltonian

The Hubbard model, named after John Hubbard, is the simplest model of interacting

particles in a lattice, with only two terms in the Hamiltonian: a kinetic term allowing

for hopping of particles between sites of the lattice and a potential term consisting of an

on-site interaction. The particles can either be fermions or bosons. It is the fermionic

version that is the classic Hubbard model.

The standard Fermi-Hubbard model considers two species of fermionic particles

which are confined in a lattice and move by hopping to the nearest neighbour sites.

Electrons are allowed to move between localized states at lattice sites with spin σ = ↑ or

↓. Interaction takes place only among the particles at the same site. There exist various

extended Hubbard models with longer range interactions, but we do not discuss them

here. In optical lattices, the nearest neighbour hopping and on-site interaction are real-

ized by having a sufficiently strong lattice potential and short range of the interparticle

interaction.

The model was originally proposed in 1963 to describe electrons in solids and has been

regarded as a model for high-temperature superconductivity. For electrons in solids,the

Hubbard model can be considered as an improvement on the tight-binding model, which

includes only the hopping term. For strong interactions, it gives qualitatively different

behaviour from the tight-binding model and correctly predicts the existence of so-called

Mott insulators, which are characterized by the strong repulsion between particles.

10



For the formulation of Hamiltonian, we must describe the motion and interactions

of electrons in a solid. We begin with a lattice of atoms(sites) on which the electrons

move and lattice vibration is neglected.

In a solid where electrons can move around, the electrons interact via a screened

Coulomb interaction. The interaction term is zero if the site is empty or has only a

single fermion, but has the value U if the site is doubly occupied. The interacton energy

term in the Hamiltonian adds an energy U everytime it finds a doubly occupied site.

In the simplest Hubbard model, the interactions between fermions in different sites are

not taken into account. The kinetic energy describes the destruction of a fermion of

spin σ on site l and its creation on site j (or vice-versa). Since wavefunctions die off

exponentially, hopping is allowed only between the closest atoms in the lattice,which is

symbolically represented as 〈j, l〉. Overlap of two wavefunctions on the pair of atoms

determines the energy scale ’t ’, which governs the hopping.

Figure 3.1: Representation of the terms in Hubbard Hamiltonian: the kinetic energy t

and on-site interaction U

Thus, the Hubbard Hamiltonian is formalised as

Ĥ = −t
∑(

c†jσclσ + c†lσcjσ

)
+ U

∑
nj↑nj↓ − µ

∑
(nj↑ + nj↓) (3.1)

In the equation,the first term corresponds to chemical bonding and is known as ‘hop-

ping’. This term is a single particle interaction and hops an electron from one atom

to a nearest neighbour with hopping matrix element t. The second term corresponds

to the Coulomb repulsion between two electrons and is therefore a two-particle interac-

tion.The third term corresponds to the chemical potential which tells how the energy

11



changes with the density of the system. At first look, the Hubbard model is all about the

competition between chemical bonding and short range Coulombic repulsion. However,

there is a third term in action: Pauli’s exclusion principle. Electrons are fermions and

so the many-particle wavefunction must be antisymmetric under interchange of any two

electrons. The competititon between these three factors and the correlations between

the electrons determine the behaviour of the model.

3.2 Single site Hubbard model

We study the simplest case of Hubbard model, that is, by considering just a single

site. In other words, we set t=0 so that we have a collection of independent sites. Four

possibilities are: site being empty |0〉 , site having a single electron |↑〉 or |↓〉 , and site

being doubly occupied |↑↓〉 ,where |0〉 , |↑〉, |↓〉and |↑↓〉 are eigenstates of Hamiltonian

with eigenvalues 0, −µ,−µ and U-2µ respectively.

The partition function is given by

Z = 1 + 2eβµ + e2βµ−βU (3.2)

Total energy of the system can be written as

E =
Ue2βµ−βU

1 + 2eβµ + e2βµ−βU
(3.3)

Occupancy as a function of d-level at finite temperature is as follows:

〈n〉 =
2(eβµ + e2βµ−βµ)

1 + 2eβµ + e2βµ−βU
(3.4)

3.3 Two site Hubbard model

We consider two sites each with 4 possibilities, giving rise to 16 combinations: both

sites empty (1), both sites singly occupied (4), both doubly occupied (1), one is empty

and the other is singly occupied (4), one is empty and the other is doubly occupied (2)

and the case where one is singly and the other is doubly occupied(4). They result in the

12



energy eigenvalues respectively 0, −2µ, 2U − 4µ, −µ, U − 2µ and U − 3µ. The partition

function is given by

Z =
∑
α

〈
α|e−βH |α

〉
(3.5)

By substituting the eigenvalues and simplifying, we get the partition function as

Z = 1 + 4eβµ(1 + eβµ) + 2e2βµ−βU(1 + 2eβµ) + e4βµ−2βU (3.6)

Occupation number can be found using the formula,

〈n〉 = Z−1
∑
n

〈
n|ne−βH |n

〉
= Z−1

∑
n

ne−βH (3.7)

It can be calculated to be

〈n〉 =
4
[
eβµ(1 + 2eβµ) + e2βµ−βU(1 + 3eβµ) + e4βµ−2βU

]
1 + 4eβµ(1 + eβµ) + 2e2βµ−βU(1 + 2eβµ) + e4βµ−2βU

(3.8)

3.4 Mott Transition

A lattice can have a maximum of two electrons per site. So the case where the filling

is one electron per site is termed as half filling. Studies of the Hubbard model is often

studied at half filled case since it exhibits a lot of interesting phenomena. We modify

the Hubbard Hamiltonian as

H = −t
∑
〈j,l〉σ

c†jσclσ + U
∑
j

(nj↑ −
1

2
)(nj↓ −

1

2
)− µ

∑
j

(nj↑ + nj↓) (3.9)

This new form differs from the original only by a trivial shift in chemical potential and

an overall additive constant to the energy.

In simple words, the metal-insulator transition due to Coulomb interactions between

electrons is called Mott transition. It provides an important foundation of how the

electron-electron interactions lead to the insulating phase. Due to strong correlation,

the original band would be split into two bands with energy gap of U, thus the system

would behave as an insulator. To understand Mott transition which occurs in transition

metals and layered organic compounds, it is necessary to know how electron change its

state from being mobile to localized.
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In normal materials, the electron-electron effects are negligible. In a Mott insulator,

every atom has one orbital left at half-filling. In order to move an electron to another

site, it would have to pair up two electrons, which is energetically unfavourable. In

systems close to metal insulator transition, the physical properties change dramatically

with the variation of parameters such as carrier concentration, temperature or external

magnetic field. It is a dynamical transition and hence categorised as a first order phase

transition.

In Mott insulators, coulomb interaction becomes comparable to Fermi energy, and

the ground state of the system can undergo a change; the electrons become bound or

localised. The material ceases to conduct. In a Mott insulator, the Mott gap is due

to coulomb interactions, whereas, the bandgap in a band insulator is due to a chemical

potential difference between sites or orbitals within a unit cell.

Mott transition directly addresses the competition between kinetic energy and cor-

relation energy, that is, the wavelike and particlelike character of electrons in solid. The

Coulomb interactions and the matrix elements that describe electron hopping from site

to site are required to calculate the experimental phase diagram of materials near a Mott

insulator.

3.5 Local moment

When the lattice has integer filling per unit cell, then the electrons can be mobile

only if they have enough kinetic energy(t) to overcome the coulombic energy U. In the

limit t � U , the electrons don’t have kinetic energy, and a gap opens, leading to Mott

insulating phase. This Mott gap is the energy an electron has to loose to overcome the

coulomb repulsion and leave the lattice site. In simple words, it is the energy for an

electron to hop to the nearest lattice site. This does not depend on the periodicity of

the lattice.

In the ground state, each lattice site is singly occupied, and the electron occupying

it behaves as aspin 1
2

magnetic moment. These magnetic moments are localised to the

lattice sites and gice rise to a fundamental quantity called “local moment”. It is defined

14



as 〈
m2
〉

=
〈
(n↑ − n↓)2

〉
(3.10)

Localised magnetic moments form the basic driving force of strong correlation.(?)

Localised moments in metals have been accepted as an experimental fact without a

rigorous study. Anderson tried to describe a quantum state of the metal in which such

a moment exists. The atom is represented by an up- and a down-spin state available for

electrons. If the atoms contain two or no elecetrons, then it has no magnetic moment.

If it contains one electron, it does have a local moment. In the absence of hopping term,

the eigenstates of the Hamiltonian are the localised orbitals on the individual site. When

hopping is turned on, the wavefunction of the particel gets exponentially localised since

its amplitude decays off exponentially.
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Chapter 4

Green’s Function

4.1 Definition and basic properties

The Green’s function, named after the English mathematician and physicist George

Green, is a powerful mathematical tool to solve linear differential equation with con-

straining boundary conditions. Green’s function method enables the solution of a dif-

ferential equation containing an inhomogeneous term, often called a source term, to be

related to an integral operator containing the source.

As an elementary example, consider the Poisson’s equaiton, which gives the potential

ψ(r) generated by a charge distribution whose charge density is ρ(r).

− O2ψ(r) =
1

ε0
ρ(r′) (4.1)

The solution gives the Coulombic potential

ψ(r) =
1

4πε0

∫
d3r′

ρ(r′)

|r− r′|
(4.2)

The right hand side of the equation is an integral operator that converts ρ into ψ , and

the kernel can be seen as the Green’s function,

G(r, r′) =
1

4πε

1

|r− r′|
(4.3)

i.e.,

ψ)(r) =

∫
d3r′G(r, r′)ρ(r′) (4.4)
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G(r,r’) gives the contribution to ψ at the point r produced by a point source of unit

magnitude at the point r’. In general, if D is a linear operator, f(x) is the desired solution

and g(x) is the homogeneity source, then

Df(x) = g(x)

then the Green’s function is defined as the solution of a differential equation with a delta

homogeneity:

DG(x, x′) = δ(x− x′) (4.5)

and

f(x) =

∫
dx′G(x, x′)g(x′) (4.6)

There are two types of Green’s function: advanced and retarded Green’s functions.If the

final state of a system is given, we can find the inital state by retarded Green’s function.

We can calculate the response of a system after it is perturbed. On the other hand, if

the initial state of the system is known, the final state can be predicted using advanced

Green’s function.

Properties

When D and its boundary conditions define the eigenvalue problem Dψ = λψ with

eigenfunctions φ(r) and corresponding eigenvalues λn, then

• G is symmetric.

G(r, r′) = G(r′, r) (4.7)

• G has the eigenfunction expansion:

G(r, r′) =
∑
n

φ∗n(r′)φn(r)

λn

• G is continuous at r=r’.

G|r=r′+ = G|r=r′−

• Derivative of G experiences a specific jump discontinuity at x=x’.

dG

dr |r=r′+
− dG

dr |r=r′−
=
−1

p(r′)
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4.2 Propagators in Quantum Mechanics

In the classical scenario, the detailed description of a many-body system requires

the position of each particle as a function of time r1(t), r2(t),... In quantum case, it

depends on the time dependent wave function of the system ψ(r1, r2, ..., rN , t). This

is a difficult task to carry out. But it turns out that it is not necessary to know the

detailed behaviour of each particle in order to find the important physical properties of

the system, but rather just the average behaviour of one or two typical particles. The

quantities that describe the average behaviour are called the propagators.

We can see that the Green’s function takes a function at some space and evolve

it to some other space. In fact, we say that Green’s function is a propagator which

propagates the particle from one point to another. Propagators play an important role

in the treatment of many body problem. The reasons for their immense use is attributed

as follows. First, they yield in a direct way the most important physical properties of

the system. Second, they have a simple physical interpretation. Third, they can be

calculated in a highly systematic and automatic way and appeals to one’s physical

intuition.

The idea is simple. We start with a system in its ground state say |0 >. Then, we

introduce (create) a particle in it which is used to probe the system. It makes interactions

with the systems that might cause some excitations. Later, we remove (annihilate) the

particle and check whether the system remains in ground state. Propagator is the

probability amplitude that the system remains in ground state.

G(r2, r1) = 〈0|(particle annihilated)(particle created)|0〉

There are one particle, two particle and zero particle propagators. One particle propa-

gator can be defined as the probability amplitude that a particle will be observed at the

point r2 at time t2 if it was intrtoduced into the system at a point r1 in time t1. Two

particle propagator is the probability amplitude for observing one particle at (r2, t2) and

another at (r4, t4) if they were put into the system at (r1, t1) and (r3, t3) respectively.

Zero propagator or vacuum amplitude is the probability that no particle emerges from

the system at t2 when we introduce no particle at time t2.
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For instance, take the example of a metal that consists of a set of positively charged

ions arranged so that they form a regular lattice or a lattice with some irregularities.

An electron interacts with these ions by means of the Coulomb force. Here, the single

particle propagator is the sum of the quantum mechanical probability amplitudes for all

the possible ways the electron can propagate from point r1 in the crystal to point r2. It

can propagate freely, or can intract with various ions. The total probability will be a

sum of all these individual properties.

P (r2, r1) = Po(r2, r1) + Po(rA, r1)P (A)Po(r2, rA) + Po(rB, r1)P (B)P (r2, rB)+

Po(rA, r1)P (A)Po(rA, rA)P (A)Po(r2, rA) + ... (4.8)

where A,B, etc.. are the ions from which the electron interacts with, Po denotes the free

propagator and the term on left denotes the total propagator.

Now, assume that there is a particular affinity towards A and also the free propagators

are all equal, i.e.,

Po(r2, r1) = Po(rA, r1) = Po(r2, rB) = ... = c (4.9)

Then,

P (r2, r1) = c+ c2P (A) + c3P 2(A) + ..

P (r2, r1) = c[1 + cP (A) + c2P 2(A) + ...]

P (r2, r1) = c[1 + cP (A) + (cP (A))2 + (cP (A))3 + ...]

This is an infinite geometric progression whose sum which can be summed as

P (r2, r1) = c

[
1

1− cP (A)

]
(4.10)

4.3 Electron’s Green’s function

The single electron Green’s function is defined as the statistical expectation value of

the product of fermion operators at different positions l and n and at different times t
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and t’.

G(t, t′) = −i
〈
θ(t− t′)

[
Cl(t)C

†
n(t′)

]〉
(4.11)

where C†n creates an electron at nth site at time t’ and Cl annihilates an electron on lth

site at time t; and, θ(t− t′) is the Heaviside step function which takes the value 1 if t is

greater than t’, and 0 otherwise.

[
Cl(t)C

†
n(t′)

]
= Cl(t)C

†
n(t′)− C†n(t′)Cl(t) (4.12)

Then, (3.11) can be written as

G(t, t′) = −iθ(t− t′)
〈
{Cl(t)C†n(t′)}

〉
(4.13)

where the operators obey anti commutation relation

{Cl(t)C†n(t′)} = Cl(t)C
†
n(t′) + C†n(t′)Cl(t) (4.14)

4.4 Equation of Motion Technique

Equation of motion technique is used to find Green’s function by determinng its time

evolution. Let us start with Green’s function.

G(t, t′) = −iθ(t− t′)
〈
{Cl(t)C†n(t′)}

〉
iδtGij(t, t

′) = i(−i)δ(t− t′)
〈
{Ci(t)C†j (t′)}

〉
− iθ(t− t′)

〈
{iĊi(t)C†j (t′)}

〉
= δ(t− t′)δij − iθ(t− t′)

〈
{[Ci, H](t), C†j (t

′)}
〉

(4.15)

This comes from the Heisenberg picture of operators.

i
dCi
dt

= [Ci, H] + i
δCi
dt

= [Ci, H] (4.16)

Commutator in the LHS tells us that the dynamics of Green’s function is fully determined

by the Hamiltonian of the system. In this way, we will get a chain of Green’s functions.

However, for non-interacting systems, the commutator is a single fermion operator and

ends at the first equation itself.
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4.5 Recursive Green’s function method

The recursive Green’s functions use computationally efficient decimation techniques,

simulating materials via effective layers. The idea of dividing the materials into layers

and modelling it in a chain is the essence of recursive Green’s function method. There

are two kinds of decimation procedures used in these methods: surface technique, and

an alternative version that stores information from the central sites.
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Chapter 5

Diagrammatic Methods

5.1 Feynman Diagrams

There are two methods for calculating propagators. One is to solve the differential

equations and the other is to expand the propagator in an infinite series and evaluate

the series approximately. This can be done in a systematic, picturesque way with the

help of Feynman diagrams.

The equation for propagator can be represented as a picture using Feynman diagrams.

Figure 5.1: Pictorial representation of infinite series

Assuming that A dominates, the series can be approximated using partial summation.

22



5.2 Single particle propagator

Consider a system of many particles into which a particle is introduced at (r1, t1).

The single particle propagator is the sum of the probability amplitudes for all the ways

the particle can travel through the system from (r1, t1) to (r2, t2). It can have free

propagation without interaction or it can emerge from the system after one or more

interactions.

For first-order interactions, it follows the following steps:

• An extra particle enters the system at time t1.

• It interacts with a particle at point r2 and changes place with it.

• Extra particle leaves at time t2

Figure 5.2: First order interaction

Second-order interaction follows the following steps:

• An extra particle enters the system at t1.

• It interacts with a particle in the system at time t, lifting it out of its place, thus

creating a hole in the system.
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• The extra particle plus the ’hole’ and the ’lifted-out particle’ (’particle-hole pair’)

propagate through the system.

• The exrta particle interacts with the lifted-out particle at time t’, knocking it back

into the hole, thus destroying the particle-hole pair.

• The extra particle moves out of the system at time t2.

Figure 5.3: Second order interaction

To represent these diagrammatically, assume that the time increases in the upward

direction.

Figure 5.4: Propagator for particle moving freely from (r1, t1) to (r2, t2).

Figure 5.5: Propagator for hole moving freely from (r1, t1) to (r2, t2)

So, the total single particle propagator can be represented as the sum of all these Feyn-

man diagrams.
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Figure 5.6: Propagator for a particle at r1 interacting with a particle at r2

Figure 5.7: Open oyster diagram for first-order interaction

Figure 5.8: Feynman diagram for single particle propagator

5.3 Two particle propagator

Two particle propagator is the sum of probability apmlitudes for all the possible

ways two particles can enter the system, interact with it and emerge at a later time.

Figure 5.9: Feynman diagram for a two particle propagator
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5.4 No particle propagator

This deals with the situation where a system has no extra particle in it. Interactions

take place between particles inside the system. Finally, no particle emerges out of the

system. It also goes by the term vacuum amplitude. It can be summarised in following

steps:

• Vacuum.

• At t1, interaction between two particles in the system cause them to be lifted out,

forming holes.

• The two particle-hole pairs move freely through the system.

• Both pairs annihilate at t2.

• Vacuum.

Figure 5.10: Representation of no particle propagator

5.5 Schwinger Dyson Equation

Schwinger Dyson Equations (SDEs), named after F. J. Dyson and J. S. Schwinger,

are the equations of motion of Green’s functions that describe the propagation and

interactions of the fields of a theory. The full system of SDEs provide a complete

description of the theory. The full system of SDEs provide a complete description of
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the theory. The building blocks of SDEs are the Green’s functions of the theory, which

describe how a particle or field propagates and interacts. They are also called correlation

functions or n-point functions.

G(ω) = g(ω) + g(ω)
∑

(ω)G(ω) (5.1)

G(iω)−1 = −iω −
∑

(iω) (5.2)

where g(ω) is the undressed Green’s function corresponding to free propagation; and

G(ω) is the dressed Green’s function corresponds to interactions.
∑

(ω) denotes the

self energy which accounts for the effects of self-consistent interactions. For interact-

ing problems, the determination of a consistent self-energy is a challenging problem.

Schwinger Dyson equations form an infinite series of couple integral equations. In order

to solve them, system must be truncated using some constraints. These equations can

be diagrammatically represented as follows:

Figure 5.11: Schwinger Dyson Equation: Diagrammatic representation

Figure 5.12: Self energy
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Chapter 6

A Brief Introduction to Holography

and Sachdev Ye Kitaev (SYK)

Model

6.1 Black hole and Information Paradox

Black hole is a region of space-time from which gravity prevents anything, including

light from escaping. The theory of general relativity predicts that a suffciently compact

mass will deform space-time to form a black hole. It absorbs all the light that falls

into it and reflects nothing, just like a perfect black body. Around a black hole, there

is a mathematically defined surface called an event horizon that marks the point of no

return.

In 1970s, Stephen Hawkings stated that when an object crosses the event horizon

of a black hole, it is continuously dragged to the centre of the blackhole where it gets

crushed. Every object contains a specific arrangement of matter, and hence some kind

of information. When it is crushed, the information is destroyed.

If a black hole can evaporate, a portion of the information it contains is lost forever.

The information contained in thermal radiation emitted by a black hole is degraded; it

does not recapitulate information about matter previously swallowed by the black hole.

The irretrievable loss of information conflicts with one of the basic postulates of quan-

tum mechanics. According to Schrodinger equation, physical systems that change over
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time cannot create or destroy information, a property known as ’unitarity ’. This appar-

ent contradiction between general relativity and quantum mechanics is the information

paradox.

A black hole in two dimensional space-time is given by 1 time and 1 space dimensions.

It is a strongly chaotic system and should be described by a Hamiltonian. Its time

evolution is given by a matrix. To resolve the information paradox, holographic principle

has been introduced.

6.2 Holography

Studies showed that informartion paradox can be explained by holographic principle

or holography. It states all the things falling inside a black hole were somehow captured

in the horizon itself. So, the information was not lost, it is encoded on the surface of

the black hole like a hologram. The information can be later retrieved in a chaotic form

through the radiation released during quantum evaporation of the black hole.

The basic idea is that information carried by all the 3D objects in the world would be

carried by some 2D surface that surround us; and we are just the holographic projection

of that. The information is stored on some kind of holographic film on the edge of

the universe. Indeed, it is now believed that all of the information contained within

our Universe is nothing more than a 3D projection of the information stored on a 2D

membrane at the edge of the cosmos.

The information contained in a black hole is not proportional to its volume, but its

surface area. If we add one bit of information, the black hole grows by one square of

planck unit. Holography is a convenient mathematical tool for us to solve higher dimen-

sional problems by reducing it to lower dimensions. This principle hepls in explaining

quantum gravity. If you make mapping from the three-dimensional Universe to two-

dimensional surface, it was found that the gravity disappears. So, our 3D Universe with

gravity might be equal to a 2D Universe without gravity. So, if we could do calculations

on the 2D structure which are normalisable and do not lead to infinity, then we can map

it back to the 3D structure to explain about our Universe.
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6.3 Motivation: SY model

The model for holography is greatly inspired by Sachdev Ye (SY) model, a random

quantum spin system originally introduced to describe a quantum Heisenberg magnet

with random infinite-range interactions. The original SY model is given by the Hamil-

tonian

H =
1√
M

N∑
j,k=1

Jj,kSj.Sk (6.1)

where the couplings Jj,k are independent random variables drawn from a Gaussian dis-

tribution, each with the same variance and a mean zero. Sjs are spin operators at lattice

sites which may take the value 1
2
, 1, 3

2
, 2, .... The coupling constant J decreases as the

distance between spins increases, but is a constant for nearest neighbours.

Quantum magnets are spin systems in which the spins interact via quantum mechan-

ical exchange interactions. There are two possible ground states of a random quantum

magnet. One is called spin-glass, which is a state with magnetic long range order with

〈Si〉 6= 0. Another one is called spin fluid which is a quantum disordered state with

〈Si〉 = 0. At zero temperature, there is a transition from spin fluid to the magnetically

ordered spin glass phase.

6.4 SYK model

6.4.1 Hamiltonian

Sachdev Ye Kitaev (SYK) model is a model for holography which relates quantum

mechanical systems to quantum gravity systems. So, what we consider is a quantum

mechanical system living in 0 space and 1 time and is related to quantum gravity problem

in 1 space and 1 time. This model is for the systems that share some properties with

black holes. SYK model deals with the quantum mechanics of N fermions, which satisfy

commutation relation.

{χi, χj} = δij (6.2)

χis are L x L matrices and are called Majorana fermions. To formulate the Hamil-

tonian for the model, we build a matrix as a sum over all possible products of four of
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these fermion operators.

H =
1

4!

∑
i<j<k<l

Jijklχiχjχkχl (6.3)

where Jijkl are couplings drawn from a random Gaussian distribution.

P (Jijkl) = exp

(−N3J2
ijkl

12J2

)
(6.4)

J defines the ensemble with mean

〈J〉 = 0

and the variance

〈J2〉 =
3!J2

N3
(6.5)

Kitaev argued that it behaved in a way that was characteristic of systems which are

holographic to quantum gravity.

Based on the similarities between the two and four point functions of 1 + 1 di-

mensional Schwarzchild black hole and those of the SYK model, this model has been

proposed as a holographic dual to Schwarzchild black hole.

6.4.2 Majorana Fermions

All the matter in the Universe are made up of particles called fermions. Physicists

know three kinds of fermions: Dirac, Weyl and Majorana fermions. Dirac fermions

have mass, and is the class to which most fermions that make up matter belong. Weyl

fermions are fermions that have no mass, and have only been found in lurking in solids

with strange properties. A Majorana fermion is its own anti particle, i.e., when one

Majorana fermion bumps into another Majorana fermion, they will both vanish.

Majorana fermions are electrically neutral elementary particles of matter first theo-

rized by Ettore Majorana in 1937. Since they are their own anti particles, researchers

believe that Majorana fermions may be useful in creating quantum computers because

when moved, they are believed to have a property which allows them to remember their

former position.

The difference between Dirac fermion and Majorana fermion can be mathematically

expressed using creation and annihilation operators of second quantisation. The creation
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operator creates a fermion in the site, whereas, an annihilation operator annihilates it.

For Dirac fermion, the fermion operators are different, while, its same for Majorana

fermions. The ordinary fermionic operators annihilation and creation operators a and

a† can be written in terms of two Majorana operators γ1 and γ2 as

a =
γ1 + iγ2√

2

a† =
γ1 − iγ2√

2

These operators satisfy the anti-commutation relation

{γi, γj} = δij

Since particles and anti particles have opposite conserved charges, Majorana fermions

have zero charge. They cannot possess intrinsic electric or magnetic moments.
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Chapter 7

Results and Discussion

7.1 Hubbard Model

7.1.1 Analytical solution of Green’s function

The single particle Green’s function is defined as the statistical expectation value of the

product of fermion operators at different positions ’l ’ and ’n’ and different times t and

t’.

Gln(t, t′) =
〈
cl(t)c

†
n(t′)

〉
(7.1)

where cn† creates an electron on n-th site at time t’ and cl annihilates an electron on

l-th site at time t.

[
cl(t)c

†
n(t′)

]
= θ(t− t′)cl(t)c†n(t′)− θ(t′ − t)c†n(t′)cl(t) (7.2)

where θ denotes the Heavyside step function which takes the value 0 if the argument is

negative, and the value 1 if otherwise.

According to Heisenberg’s representation, the operator evolves from t’ to t as

ĉl(t) = eiĤ(t−t′)ĉl(t
′)e−iĤ(t−t′) (7.3)

Then, the Green’s function becomes

Gln(t, t′) = −iθ(t− t′)
〈
{ĉl(t), ĉn†(t′)}

〉
(7.4)

Gnn(t, t′) =
−i
Z
θ(t− t′)

∑
nm

| 〈n|cn(t′)|m〉 |2e−i(εm−εn)(t−t′)(e−βεn + e−βεm) (7.5)
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When the system is at equilibrium or when the Hamiltonian is independent of time, it

is convenient to represent Green’s function in energy domain than in time domain. In

this case,

G(ω) =
1

Z

∑
mn

| 〈n|cn(t′)|m〉 |2

ω − (εm − εn) + iη
(e−βεn + e−βεm) (7.6)

For non-interacting Hamiltonian, the poles of the Green’s function corresponds exactly

to the eigen energies.

7.1.2 Single site

The following figures show occupation number as a function of chemical potential.

At half filling, ρ = 1. We do not fill the site with a second particel ρ = 2 until µ jumps

by U. Presence of one fermion on a site blocks the addition of a second. There is a flat

region form µ = −U/2 or U/2. If we reach a region where no more energy levels exist, µ

has to take a jump to the bottom of the next band. The jump in µ reflects the existence

of a gap.

Figure 7.1: Plot of 〈n〉 v/s µ at U=4 for different temperatures
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Figure 7.2: Plot of 〈n〉 v/s µ at U=0 for different temperatures.

7.1.3 Two site

The following figures show the occupation number of a two site Hubbard model at

different temperatures. It can be observed that at lower temperatures, it shows insulating

behaviour. All graphs are plotted at U = 4.

Figure 7.3: Plot of 〈n〉 v/s µ for β = 2 and β = 0.5.
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Figure 7.4: Plot of 〈n〉 v/s µ for β = 0.5 and 3.

Figure 7.5: Plot of 〈n〉 v/s µ for β = 0.5 and 1.
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7.2 SYK Model

7.2.1 Density of states of infinite chain

We define a linearly spaced vector of energies and evaluate the undressed Green’s

function. Then, we find the Green’s function for the semi-infinite chain using the analytic

expression and determine the infinite chain Green’s function by joining two semi-infinite

chains. From, the imaginary part of the Green’s function, density of states can be

calculated using the formula

ρ1(ω) =
−1

π
ImG11(ω) (7.7)

Figure 7.6: Density of states of an infinite chain

7.2.2 Analytical solution of Green’s function

Green’s functions are also called n-point functions. Wick’s theorem states that for

non-interacting particles, higher order Green’s function involving more than one particle

can be factorized into products of single-particle Green’s functions. The free two-point

function for the SYK model is given by

Go(t1, t2) = −〈Tχi(t1)χj(t2)〉

where T denotes the time ordering of operators, which can be expanded using Heaviside

step function as

Tχi(t1)χj(t2) = θ(t1 − t2)χi(t1)χj(t2)− θ(t2 − t1)χj(t2)χi(t1)
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We use the relation between Heaviside step function and signum function

sgn(t1 − t2) = 2θ(t1 − t2)− 1

Go(t1 − t2) =
−1

2
sgn(t1 − t2)δij (7.8)

G(t1, t2) = Go(t1, t2) + J2

∫
dtadtbGo(t1, ta)G(ta, tb)

3G(tb, t2)

= sgn(t1− t2)12 −
J2

2

∫
dtadtbsgn(t1− t2)G(ta, tb)

3G(tb, t2) (7.9)

Self energy is given by ∑
(t1, t2) = J2G(t1, t2)

3 (7.10)

Schwinger Dyson equation gives

G(iω)−1 = −iω −
∑

(iω)

In the limit where ω tends to zero,

− 1 = G(iω)
∑

(iω) (7.11)

Let us take a function of the form,

G(t1, t2) = c|t1 − t2|xsgn(t1 − t2) (7.12)

t1 = t and t2 = 0 gives

G(t, 0) = c|t|xsgn(t)

Fourier transform of G(t,0),

G(iω) =

∫
dteiωtc|t|xsgn(t) (7.13)

We know that the Gamma function is defined as

Γ(z) =

∫ ∞
0

xz−1e−xdx (7.14)

G(iω) = 2iCsgn(ω)cos
(πx

2

)
Γ(1− x)|ω|x−1 (7.15)∑

(iω) = J2

∫
dteiωtC3|t|3xsgn(t) (7.16)

∑
(iω) = 2iJ2C3sgn(ω)cos

(
3πx

2

)
Γ(1− 3x)|ω|3x−1 (7.17)
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Using this, we can write

−1 = −4J2C4cos
(πx

2

)
cos

(
3πx

2

)
Γ(1− x)Γ(1− 3x)|ω|4x−2

Put x= 1
2

and simplify to obtain

C = −
(

1

4πJ2

) 1
4

From here, Green’s function can be obtained as

G(t1, t2) = −
(

1

4πJ2

) 1
4 1√

t1 − t2
sgn(t1 − t2) (7.18)

7.2.3 Density of states of semi-infinite chain

We use the recursive method to evaluate the surface density of states of a semi-infinite

linear chain. Effective Green’s function of site 1,2 and 3 can be calculated from

g̃1 =
g1

1− g1tgat∗

g̃2 =
g2

1− g2t∗gat− g2tgbt∗

g̃3 =
g3

1− g3t∗gbt

Recursive decimation procedure is run for 16 steps. We renormalize the hoppings and

undressed Green’s functions, carrying the decimation.

Figure 7.7: Density of states of the surface site
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7.2.4 Density of states of three-site chain

We use the equation of motion technique to find the density of states of a three-site

linear chain with nearest neighbour hoppings. Green’s function of sites can be found

using the relations

G11 =
g1

1− ( g1tg2t∗

1−g2tg3t∗ )

G22 = g2 + g2t
∗G12 + g3tG32

G33 =
g3

1− ( g3t∗g2t
1−g2t∗g1t)

Figure 7.8: Density of states of a three site linear chain

The orange line shows the density of states of site 2 (central site), having only one peak.

It is different from that of the external sites 1 and 3, which are shown by the green line,

which has 2 peaks.
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Chapter 8

Summary and Conclusion

In third semester, the project strated with a detailed understanding of quantum har-

monic oscillator, ladder operators and fermion operators. Partition function, occupation

number and Hubbard Hamiltonian were studied in detail. The model was solved for sin-

gle site and two site. Green’s function for the model was found analytically. Through

this study, we could show that certain materials which are conventionally predicted as

metals can show insulating behavoiur, a property known as Mott transition.

In this semester, we started off with addressing many body problems and finding

a way to handle them easily via Feynman diagrams. Green’s function is discussed in

detail and the idea of propagators is introduced. Infromation paradox is reviewed and

holographic principle is put forward as a solution. Sachdev Ye Kitaev model, which is

proposed for holography is studied in detail. An in-depth study about the Hamiltonian

and the operators included were also carried out. Green’s function for the model is

determined analytically. Through this work, it can be concluded that SYK serves as a

model for holography and can be applied to system with infinite range interactions.
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