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Abstract

One of the main roadblocks in the development of Quantum Computers is its vulnerability for

accumulating errors through interaction with the environment. This is why we need to isolate

and cool them to cryogenic temperatures. Even then these interactions cannot be completely

nullified and the qubits will eventually decohere. Quantum Error Correction (QEC) can help us

detect and correct such errors and make our Quantum Computation fault-tolerant under certain

circumstances. QEC’s are loosely based on the Classical Error-Correcting (CEC) codes. CEC’s use

redundant information to detect and correct errors. But Quantum Information cannot be copied due

to the No- Cloning theorem. So QEC’s encodes the information onto a highly entangled state and

detects errors by making suitable measurements on this entangled system without disturbing the

superposition of the state. A general formalism called the Stabiliser formalism has been developed

to study different types of QEC’s. In this project, the formalism of Quantum Error Correction is

studied.The graphical language of tensor network in the context of Open Quantum Systems is also

explored.Finally code for simulating arbitrary surface code error correction circuits was realised in

Qiskit.
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1 Introduction

Quantum computation is a distinctively new way of harnessing nature. It will be the first

technology that allows useful tasks to be performed in collaboration between parallel universes.

− David Deutsch

The field of Quantum Computing has made enormous progress in the last 50 years. The theory of

computation has made enormous leaps from an abacus of the Babylonians to Supercomputers ca-

pable of simulating black hole collisions. The present digital computers which are based on classical

logic, even though extremely powerful, turn out to be inefficient in simulating real quantum sys-

tems, as observed by Richard Feynman [13]. In the paper, he concludes that to efficiently simulate

a quantum system the computer should itself be a quantum system. This is because the states of

quantum systems (e.g, a quantum magnet with N spins) are inherently probabilistic and requires

exponentially(2N ) many ’amplitudes’ to be specified for a given size. A quantum computer is such

a system that leverages quantum phenomenon like entanglement and superposition to provide ex-

ponential speedups to problems.

The main difference between a classical and quantum computer is their state space. A classical

computer stores information as strings of binary variables ∈ {0, 1} called bits and perform com-

putations using logical operators e.g AND, OR, NAND. A quantum computer on the other hand

stores information as a vector living in a Hilbert space and performs computations via Unitary

Transformations on that Hilbert space. The analogue of bits in quantum computing is a qubit

which is a normalized vector in C2. Unitary operators act linearly on this vector and this can be

thought of as a computation happening parallelly on each basis state of the qubit. This is where

QC derives its exponential speedups for various kinds of problems like,

• Simulation of Chemistry

• Machine Learning algorithms with large feature vectors and training sets

• Finding Prime Factors of Large Numbers

• Searching for elements in a list

Presently Quantum Computing is in its infancy. We are in the Noisy Intermediate Scale Quantum

Computing(NISQ) Era. The number of Qubits in present Quantum Computers ranges from 10 - 50

Qubits. Many of the interesting applications of QC requires thousands of qubits. One of the main

roadblocks in achieving this is noises, accumulated due to interaction with the environment. This

is why we need to isolate and cool them to cryogenic temperatures. Even then these interactions

cannot be completely nullified. Quantum Error Correction (QEC) can help us detect and correct

such noises and make our quantum computation fault-tolerant under certain circumstances. There-

fore, only with the development of scale-able QEC’s can QC realize its full potential. QEC’s are
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loosely based on the Classical Error-Correcting (CEC) codes. CEC’s use redundant information

to detect and correct errors. But, Quantum Information cannot be copied due to the No-Cloning

theorem. So, QEC encodes the information onto a highly entangled state and detects errors by

making suitable measurements on this entangled system, without disturbing the superposition of

the state. A general formalism called the Stabiliser formalism has been developed to study different

types of QEC’s. In this project, the formalism of Quantum Error Correction, the graphical language

of tensor networks, and its applications are studied.

1.1 Tensor Networks

Tensors are a fundamental mathematical object used throughout physics, maths and computer

science. It is an n-dimensional array of real or complex numbers. But what makes tensors useful

is that it represents multi-linear mappings between vector spaces. It is a function of multiple

parameters such that it is linear in each parameter. Interpreting tensors as mappings can introduce

the notion of coordinate Independence which Einstein used to formulate his General Theory of

Relativity in a beautiful geometric way. Tensor Networks are a collection of tensors joined by

contractions. These networks can be studied and visualised using an elegant graphical language

developed by Roger Penrose, which are discussed below. It was later used by David Deutsch to

develop the quantum circuit model of quantum computation.

1.1.1 Penrose Graphical Notation

This notation, developed by Penrose, has the advantage over algebraic representations because it

can provide a rich visual intuition for otherwise hard concepts. Different shapes can denote different

types of tensors. Open legs pointing to the left denotes upper indices (kets) and open wires pointing

to right denotes lower indices (bras). A few examples are shown below:
1

ψi
∑
i

ψ
i
| i 〉

(b)

i

j

k
T

∑
ijk

T ijk | i 〉| j 〉〈 k |

(a)

=

=

Figure 1: (a):(2,1)-Tensor. (b):vector

1All images by the author unless credited
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Figure (a) represents a Rank-3 Tensor in the space Hi ⊗Hj ⊗H k. Figure (b) is a Rank-1 Tensor

living in Hi

k ψ
∑
ij

(∑
k

T ijk ψ
k

)
| j 〉| i 〉

i

j
T

(c)

=

Figure 2: Contraction between a (2,1) Tensor and a Vector

When wires are joined together they denote contraction between indices of a tensor. For example

in fig 2.(c) index-k is contracted between T ijk and ψk.

i

j

i j

(d) δij (e) δij

j

i

(f) δij

=
∑
ij

δij |i〉〈j| =
∑
i

|i〉〈i| = |0〉〈0| + |1〉〈1| + .....+ |d〉〈d|(d) δij

(e) δij
∑
ij

δ
ij
|i〉|j〉=

∑
i

|i〉|i〉 = |0〉|0〉 + |1〉|1〉 + .....+ |d〉|d〉=

∑
ij

δij〈i|〈j|=
∑
i

〈i|〈i| = 〈0|〈0| + 〈1|〈1| + .....+ 〈d|〈d|=(f) δij

Figure 3: (d) is the identity wire (e) is called the cup and (f) is called cap. cup and caps are used

to raise and lower indices. They play the role of metric tensor in relativity.

i ψ

j

=
∑
jk

δkj〈j|〈k|
∑
i

ψi|i〉 =
∑
j

〈j|

(∑
ik

δkjψ
i〈k|i〉

)

=
∑
j

〈j|

(∑
ik

δkjψ
iδik

)
=
∑
i

ψi〈i|

k

(g)

Figure 4: (g) shows a contraction between a ket and a cap which converts it to a bra.
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(h)

=
∑
i

ψi|i〉

j

k
ψ i

Figure 5: (h) shows a contraction of a bra with a cup which converts it to a ket

j

ij

i

ji= =

(i)

Figure 6: (i) is the Snake Equation

T

i j

k
= tracek,l

(
T ikjl

)
=
∑
k

T ikjk
l

(k)

Figure 7: Tracing out an index
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σx σx

∑
i

σix|i〉〈i|
∑
i

σix|i〉|i〉

vectorisation

Figure 8: Vectorisation of an Operator

ψ̂ψ ψ= =

(a) (b) (c)

Figure 9: This is 2-party Quantum State |ψ〉. It can also be interpreted as an operator ψ̂ acting on

the bell state. The state |ψ〉 and operator ψ̂ is related by wire-bending.

1.1.1.1 Map - State Duality

1.1.1.2 Schmidt Decomposition

ψ ψ

ΣU V †

ψ̂

σ
U

V

V †U

σ

= =

=

==

S.V.D

∑
i

σi|ui〉|vi〉

(a) (b) (c)

(d)(e)(f)

Figure 10: (f) is the Schmidt Decomposition of the 2 party State
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The vector |σ〉 provides information about the amount of entanglement between the two subsystems

of |ψ〉.

V

U

0 =

0U

V 0

(g)

Figure 11: (g) represent Schmidt Decomposition of Separable State

=

(h)

V

U

+
U

V

Figure 12: (h) represents Schmidt Decomposition of a maximally Entangled State

If |σ〉 has only one non-zero component |ψ〉 will be a separable state and will have no

entanglement whereas if all the components of |σ〉 are non-zero and equal then |ψ〉 corresponds to

maximally entangled state.

The components of |σ〉 are called the Schmidt coefficients and the quantity E = −
∑
i σilog(σi) is

called the entanglement entropy and gives a quantitative measure of entanglement between

bi-partitions.
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2 Scope and Objective

2.1 Scope

Quantum Error Correction(QEC) is inevitable if we want to realise scalable Quantum Comput-

ers.Moreover the theory of Quantum Error Correction is surprisingly linked to various different

parts of theoretical physics like Holography[14] and Topological matter.

2.2 Objectives

• To study the formalism of Quantum Channels.

• To study the formalism of Quantum Error Correction.

• To study graphical tensor networks and apply them to Quantum Information.

• To make simulations of QEC protocols in Qiskit and deploy them on IBMQ.

• To Study application of Tensor Networks in Quantum Machine Learning.
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3 Open Quantum Systems

Open Quantum Systems are system which interacts with the environment.All real world systems

are open.Sufficiently isolated systems can be treated as closed.Isolated systems evolve according to

the Schrödinger equation while Open Systems evolve according to the Lindblad Equation.Quantum

channels are used to model open system dynamics with some constraints.

3.1 Quantum Channels

Time evolution of an isolated system is represented by a Unitary Operator (Û) acting on the systems

wave function. This is done so that probabilities are conserved.

〈ψ(t)|ψ(t)〉 = 〈ψ(0)|Û†Û |ψ(0)〉 = 〈ψ(0)|ψ(0)〉 =⇒ Û†Û = I

ρ(0) U†U=ρ(t)

Figure 13: A Unitary transformation acting on a density matrix

In general, if the system is not fully isolated from the environment, the evolution will be global

unitary on the system + environment.

3.1.1 Stinespring Representation

If ρs(0) ∈Hs is the initial density matrix of the system and ρe(0) = |e〉 〈e| ∈He the initial density

matrix of the environment. The composite system-environment density matrix is given by:

ρ(0) = ρs(0)⊗ |e〉 〈e| (1)

. The Quantum Channel (E) performs a unitary operation U on the composite system. This

generally entangles the initially separable states. The composite density matrix evolves into:

ρ(t) = Uρ(0)U† (2)

ρ(t) = U(ρs(0)⊗ |e〉 〈e|)U† (3)

Since the environment has a large number of degrees of freedom, it is almost impossible to keep

track of all of them. We can get the reduced density matrix of the system by taking a partial

trace over the environment. This is equivalent to discarding the environment degrees of freedoms.

ρs(t) = E(ρs(0)) = tre[U(ρs(0)⊗ |e〉 〈e|)U†] (4)

8



ρs(0)

U†U=ρ(t)

e e

Figure 14: Evolution of system + environment density matrix under a global unitary

ρs(0)

U†U=E(ρs(0))

e e

Figure 15: Tracing out the environments degrees of freedom

3.1.2 Kraus Representation

By expanding the initial environment density matrix on some arbitrary basis |i〉, we obtain the

Kraus-Sudarshan representation of the quantum channel.

ρs(t) = tre[U(ρs(0)⊗ (
∑
i

λi |i〉 〈i|))U†] (5)

ρs(t) =
∑
j

〈j| (U(ρs(0)⊗ (
∑
i

λi |i〉 〈i|))U†) |j〉 (6)

ρs(t) =
∑
j,i

(
√
λi 〈j|U |i〉)ρs(0)(λi 〈i|U† |j〉) (7)

ρs(t) =
∑
j,i

Kijρs(0)K†ij (8)

Here Kij is the Kraus-Sudarshan operator.

For the Kraus operators to map density matrices to density matrices there is an added constraint

that it should preserve the trace.

9



∑
i

∑
j

=
Kij K†ij K†ij Kij ρs(0)ρs(0)

∑
i

∑
j

=ρs(0)

∑
i

∑
j

K†ij Kij =
=⇒

Figure 16: Kraus operators must be trace preserving

=
ee

ii
√
λi

√
λi

√
λi

√
λi ii

j

√
λi

√
λi

ρs(0)

U†U

∑
i

j

∑
j

jii

ρs(0) K†ijKij

∑
i

∑
j

E(ρs(0))

ρs(0)

U†U

ρs(0)

U†U
∑
i

ρs(0)

U†U∑
i

j

∑
j

=

=

=

==

=

Figure 17: Diagrammatic conversion from Stinespring representation to Kraus representation
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3.1.3 Superoperator Representation

This representation is based on the fact that the set of Pauli operators (I, σx, σy, σz) forms a basis

for hermitian operators and so the density matrix of the system can be decomposed as their linear

combinations. Qubit is a quantum system of dimension N= 2. Let [|0〉 , |1〉] be an orthonormal basis.

Pure qubit states can be expressed as linear combinations of these two vectors, |ψ〉 = α |0〉+ β |1〉.
Because of the normalisation condition |α|2 + |β|2 = 1, the state can be written as:

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
〈1| (9)

With parameters θ ∈ [0, π] and φ ∈ [0, 2π) uniquely define a point τ = (x, y, z) = (sin θ cosφ, sin θ sinφ, cos θ)

on a unit sphere, which is known as the Bloch sphere.

θ

φ

x̂

ẑ

ŷ

|ψ〉

= |0〉

−ẑ= |1〉

Figure 18: The Bloch ball

A density matrix that corresponds to a pure state |ψ〉 is:

ρ = |ψ〉 〈ψ| = 1

2

(
1 + z x− iy
x+ iy −1 + z

)
=

1

2
(I + τ.σ) (10)

Where σ is a vector of Pauli matrices, σ = (σx, σy, σz), σx = ( 0 1
1 0 ) , σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
.

Mixed states are convex combinations of pure states. For every mixed qubit state ρ there exist

states |ψ1〉 , |ψ2〉 and p ∈ IR, p ≤ 1, so that ρ can be expressed as:

ρ = p |ψ1〉 〈ψ1|+ (1− p) |ψ2〉 〈ψ2| =
1

2
[I + (pτ1 + (1− p)τ2).σ] (11)

Mixed qubit state can be represented with vector τ that lies inside the unit ball. This unit ball is

called the Bloch ball, i.e., the space bounded by the Bloch sphere. Every qubit state corresponds

to a point in the Bloch ball. If the state is pure, the point is on the sphere, |τ | = 1 otherwise it

11



lies inside,|τ | ≤ 1. Let d = 1
2 (w, τ) = 1/2 = 1

2 (w, x, y, z) so that ρ = d.(I, σ) = d.(I, σx, σy, σz).

The condition for ρ to be a valid density matrix is w = 1, |τ | ≤ 1 and the elements of d should

be real. The action of a Quantum Channel on ρ can be viewed as a linear transformation from

ρ → ρ′ which can can be viewed as a linear transformation on d , i.e [d = 1
2 (1, x, y, x)] → [d′ =

1
2 (1, x′, y′, x′)],d′ = S.d. Further the density matrix can be vectorised as illustrated in figure 8.

Then the Superoperator can be represented graphically as a two index tensor.

Because of the condition that S should preserve the trace, S can be written as a block matrix.

S ρ
combining indices

S ρ

Figure 19: Combining indices of a Superoperator

S =

(
1 0

t T

)
(12)

Here 0 = (0, 0, 0), t is a column matrix and T is a 3× 3 matrix. The transformation τ → τ ′

becomes an affine transformation, τ ′ = T.τ + t. It is possible to write T as a product of two

rotational matrices O1,O2 and a diagonal matrix Λ,T = O1ΛO1 by Singular Value

Decomposition (SVD). Since rotational matrices only rotate the coordinate system, we restrict

ourselves to the case T = Λ. Then, t = (tx, ty, tz) and λ = (λx, λy, λz) that determine, up to

rotations, any arbitrary qubit channel. The transformation becomes:

τ ′ =

(
λx 0 0
0 λy 0
0 0 λx

)
τ + t = (λxtx, λyty, λztz) (13)

since |τ | ≤ 1, τ ′ = (x′, y′, z′) lies inside the ellipsoid defined by,

(
x′ − tx
λx

)2 + (
y′ − ty
λy

)2 + (
z′ − tz
λz

)2 ≤ 1 (14)

Parameters λx, λy, λz define scaling of the Bloch ball and parameters tx, ty, tz define translation of

the origin of the Bloch ball.

12



Figure 20: Evolution of Bloch ball under bit-flip map with two different bit - flip probabilities.Taken

from [15]

The properties of S to be a valid superoperator can be expressed graphically as,

S S= =⇒ S preserves Hermitian matrices

S = =⇒ S preserves trace

Figure 21: Properties of a Superoperator

3.1.4 Choi-Matrix Representation

This is a vectorisation of the Kraus operators. The Choi matrix of a Channel E represented by the

set of Kraus operator Ki is given by,

CE = (I ⊗ E) |Φ+〉 〈Φ+| = (I ⊗
∑
i

Ki) |Φ+〉 〈Φ+| (I ⊗
∑
i

K†i ) (15)

∑
i Ki K†i

Ki Ki

∑
i

= CE=

Figure 22: Choi matrix as a vectorisation of Kraus Operators

Where |Φ+〉 is the bell state. The evolution of the state in terms of Choi - Matrix is given by,

13



E(ρ) = TrX [(ρT ⊗ I)CE ] (16)

X is the degree of freedom of the system. Equivalence between Choi - matrix representation and

Kraus representation is shown in diagrammatic form.

CE
E(ρ) ρT

CE

ρ

ρ

Ki Ki

∑
i

∑
i

ρ
Ki K†i

∑
i

ρ

Ki K†i

= =

=

==

Figure 23: Equivalence between Choi - matrix representation and Kraus representation.

14



4 Quantum Error Correction

We have learned that it is possible to fight entanglement with entanglement.

− John Preskill

A quantum computer operates on a quantum system (S) by applying a series of gates on S and

making a measurement in an appropriate basis. But, one of the main practical problems is

presented by decoherence, which is the phenomenon by which S interacts and gets entangled with

the environment in an uncontrolled way, such that, the final state of the system is not the one

that we would expect if S was isolated. An ideal gate will map states living on the surface of the

Bloch ball to its surface but, decoherence can map states living on the surface to the inside of the

Bloch ball.

|ψ〉

U

state preparation unitary gate measurement

environment

entanglement

Figure 24: Illustration of a noisy quantum operation

Such noisy operations can be modelled by a completely positive trace-preserving (CPTP) linear

map or quantum channel(N ) with Kraus operators (Ei).

N (ρ) =
∑
i

EiρE
†
i ,
∑
i

E†iEi = I (17)

Quantum Error Correction is the procedure to find and revert such undesirable noises from our

computations.

4.1 Quantum Error Correcting Codes(QECC)

Given a quantum system with Hilbert space HS , a quantum error correcting code (QECC) is a

subspace CS ⊆HS . It is also called the code subspace and states in CS is called the code words or

code states.

Given another quantum system with Hilbert space HS′ , dimHS′ ≤ dimHS , an encoder is a quan-

tum channel E : B(HS′)→ B(HS), E(ρS) = WρSW
† ∀ ρS ∈ B(HS′), where W : HS′ →HS is an

15



isometry (W †W = IHS
). The QECC will be the image of this encoder.

A QECC is exact w.r.t to a noise channel (N ) if there exists a Recovery Map (R) such that,

R ◦N ◦ E = IHS′ (18)

B(HS′)

physical state space

E : B(HS′)→ B(HS)

encoding
C ⊆ B(HS)

code space

N : B(C)→ B(HS)

Noisy Channel
N (ρ) ∈ B(HS)

noisy output

R : B(HS)→ B(C)R ◦N (ρ) ∈ C

Recovery Channel

E−1 : B(HS)→ B(HS′)

decoding

Figure 25: Illustration of an error correction scheme

4.2 Knill-Laflamme conditions

Given a noise channel N (ρ) =
∑
iEiρE

†
i and a QECC (C), a necessary and sufficient condition for

the existence of a recovery map R correcting against N are given by : PE†iEjP = λijP where P is

the projector onto C and λ = (λij) is a density. By picking a basis|a〉 of C, it can be observed that

〈a|E†iEj |b〉 = λijδab, which means that orthogonal codewords remain orthogonal under the action

of the noise.

PROOF:

Assume that there exists a recovery map R with Kraus operators Rj and Stinespring dilation

UR : |ψ〉 ⊗ |0〉A →
∑
j Rj |ψ〉 ⊗ |A〉A , where A is some ancilla system. Then for R to correct N :

URUN : |ψ〉⊗|0〉E⊗|0〉A →
∑
ij

RjEi |ψ〉⊗|i〉E⊗|j〉A =
∑
ij

λ̃ij |ψ〉⊗|i〉E⊗|j〉A = |ψ〉⊗|junk〉EA for |ψ〉 ∈ C

(19)

We then have that:

PE†iEjP = PE†i (
∑
k

R†kRk)EjP = P (
∑
k

λ̃∗ikλ̃kj)P = λijP (20)

Where λij is Hermitian and 〈u|E†iEj |v〉 = λijδuv and |u〉 , |v〉 orthogonal vectors in codespace.
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Since λij is a Hermitian matrix it can be diagonalized using a unitary matrix, i.e.,

λij =
∑
k

uikdku
∗
jk (21)

With eigenvalues dk ≥ 0

With this, we can now define a new set of operators Fk =
∑
i uikEi/

√
dk when dk 6= 0.These

errors are called principle errors.When dk =, Fk =
∑
i uikEi ,these are called null errors. The new

opertators Fk spans the set of possible Errors {Ei}.Now the Knill - Laflamme conditions becomes,

PF †kFlP = δklP =⇒ 〈u|F †kFl |v〉 = δklδuv. when dk 6= 0

〈u|F †kFk |v〉 = 0 when dk = 0

Figure 26: (A): Bad code with non-orthogonal overlapping resultant spaces (B): Good code with

orthogonal distinguishable resultant spaces.(figure taken from Nielsen & Chuang 2010)

Physically this means that by using some ancilla we move the entanglement between system and

environment, induced by the noise channel, to entanglement between environment and ancilla. An

error correction scheme extracts entanglement entropy from the system and puts it into the

ancilla. If we then want to reuse the same ancilla for a second round of error correction, we have

to first reinitialise it, which costs energy. This is reminiscent of a sort of refrigeration.
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4.3 Stabilizer Formalism

An important class of quantum error correcting codes is given by stabilizer codes.

The Pauli group: Gn of n qubits is defined as the group with elements given by all the possible

n-fold tensor products of Pauli matrices, where each tensor-product factor can be independently

an I,X,Y or Z, together with multiplicative factors ±1,±i, where the group operation is the

matrix multiplication. Those elements with a multiplicative factor +1 are called Pauli operators.

Examples:

G2 : {±I ⊗ I,±iI ⊗ I,±X ⊗ I,±iX ⊗ I,±Y ⊗ I,±iY ⊗ I,±Z ⊗ I,±iZ ⊗ I,±I ⊗X,
±iI ⊗X,±X ⊗X,±iX ⊗X,±Y ⊗X,±iY ⊗X,±Z ⊗X,±iZ ⊗X,±I ⊗ Y,±iI ⊗ Y,
±X⊗Y,±iX⊗Y,±Y ⊗Y,±iY ⊗Y,±Z⊗Y,±iZ⊗Y,±I⊗Z,±iI⊗Z,±X⊗Z,±iX,±Y ⊗Z,
±iY ⊗ Z,±Z ⊗ Z,±iZ ⊗ Z}

Stabilizer group (Sn): It is an abelian subgroup of the Pauli group Gn that does not contain

−I⊗. A stabilizer group can be compactly specified by m ≤ n independent generators

S1, ..., Sm(i.e. the minimal number of elements such that any other one can be expressed as a

product of them) and we use the notation Sn = 〈S1, ..., Sm〉 to mean that Sn is generated by the

given set. All elements in Sn have eigenvalues in {1,−1}. This can be seen by noting that

S2
i = I⊗n for all Si ∈ Sn.

Error Syndrome: Given a Pauli operator P in Gn, we define its (error) syndrome w.r.t. a given

set of stabilizer generators {Smi=1} ∈ Sn as the vector k = (k1, ..., km), where ki is 1 if P commutes

with Si i.e [Si, P ] = 0 and 1 if P anti-commutes with Si i.e {Si, P} = 0.A stabilizer anti -

commutes with an error, if the error kicks the codewords out of the +1 eigenspace of that

stabilizer.

Stabilizer Code: Let H = (C2)⊗n and Sn be a stabilizer group for n qubits. A stabilizer code is

given by the simultaneous +1-eigenspace C of the elements in Sn.The states in C are called

codewords.It can be seen that a pauli error P acting on any |ψ〉 ∈ C will take it outside C and by

measuring the error syndrome we can determine P. we can revert the error by applying P once

again since P 2 = I⊗n.

If Sn has m independent generators, it encodes n−m logical qubits. This is because each

generator divides the physical hilbert space in two, a +1 and a −1 eigenspace. since the physical

hilbert space is 2n dimensional the logical hilbert space will be 2n−m dimensional.
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Centralizer Z(Sn): It is the subgroup of the Pauli Group (G) that commutes with all elements

in Sn. If an error in Z(Sn) occurs we cannot detect it using syndrome measurements.

Let Ea, Eb be two possible Pauli Errors. We cannot distinguish between them if they both share

the same error syndrome, k i.e, both Ea and Eb commutes/anti - commutes with the same set of

stabilizers in Sn. Then [E†aEb, S] = 0 ∀S ∈ Sn i.e, E†aEb is an element in the centralizer Z(Sn) if

E†aEb ∈ Sn even though we cannot distinguish between them we can apply either Ea, Eb to revert

the error since one of three possibilities can occur each of which trivially on the code subspace.

(E†aEb ∈ Sn, E2
a = I⊗n, E2

b = I⊗n). Codes having this property are called degenerate codes. A

QECC cannot simultaneously correct errors (Ea, Eb) if E†aEb ∈ Z(Sn)− Sn for nondegenerate

codes, the equivalance between the above condition and the knill - laflamme conditions can be

readily seen.

Code distance: The weight of a Pauli operator is the number of non-identity operators in it. For

example, the operator X ⊗X ⊗ Z ⊗ Y ⊗ I ⊗ I has a weight of 4. The code distance is the

minimum weight of a Pauli operator that maps codewords to a different codeword. In stabilizer

codes, the distance will be the minimum weight of operators in Z(Sn). A code with a distance d

can correct errors with a maximum weight of d−1
2 . A code with n physical qubits, k logical qubits

and d distance is called a [n,k,d] code.

Digitisation of noise: Suppose C is a quantum code and R is the error-correction operation to

recover from a noise process N with Kraus Operators {Ei}. Suppose F is a quantum operation

with Kraus Operators {Fj} which are linear combinations of the Ei,that is Fj =
∑
imjiEi for

some matrix mji of complex numbers. Then the Recovery operation R also corrects for the effects

of the noise process F on the code C.This can be seen as follows,

URUF (|ψ〉 ⊗ |0〉E ⊗ |0〉A) = UR(
∑
j Fj |ψ〉 ⊗ |j〉E ⊗ |0〉A) = UR(

∑
j

∑
imjiEi |ψ〉 ⊗ |j〉E ⊗ |0〉A) =∑

j

∑
k

∑
imjiRkEi |ψ〉 ⊗ |j〉E ⊗ |k〉A =

∑
jkimjiλik |ψ〉 ⊗ |j〉E ⊗ |k〉A = |ψ〉 ⊗ |junk〉EA

This can be understood as: whenever we measure the syndrome |k〉A the state collapses to one of

the errors Ei corresponding to the observed syndrome.

Syndrome measurement:
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|ψ〉

|0〉A H

Si

H

Figure 27: Circuit for measuring syndrome

The above circuit can be used to measure the syndrome ki corresponding to the stabilizer Si.

Evaluation of the circuit yields,

1

2
((I + Si) |ψ〉)⊗ |0〉A +

1

2
((I − Si) |ψ〉)⊗ |1〉A = (P+1) |ψ〉 ⊗ |0〉A + (P−1) |ψ〉 ⊗ |1〉A (22)

Here P+1 is the projector on to the +1 eigenspace of Si and P−1 is the projector on to the −1

eigenspace of Si. The state of the ancilla represents the syndrome.
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4.3.1 Repetition codes

The qubit |ψ〉 is to be transmitted through a noisy channel which performs a bit-flip with a prob-

ability ’p’. If we transmit the qubit without encoding the data gets corrupted with probability

’p’.

encode

|ψ〉

noisy channel correction

X

X

X

syndrome qubits
|0〉

|0〉

decode

|ψ〉

Figure 28: Circuit for repetition code

The state to be transmitted can be expanded in the computational basis as α |0〉+ β |1〉. After

encoding, the combined state of three qubits becomes:

CNOT (q0, q1) ◦ CNOT (q0, q2)[α |000〉+ β |100〉] = α |000〉+ β |111〉

Notation: CNOT (q1, q2) |q1〉 |q2〉 = |q1〉 |q1 ⊕ q2〉

The encoding is an isometric map from a one dimensional Hilbert space H to a three dimensional

Hilbert space H ⊗H ⊗H . The valid codewords is a subspace of this Hilbert space spanned by

|000〉 and |111〉.
Once this encoded state is sent through the noisy channel and if the probability of a bit flip

occuring is ’p’, one of 8 things can happen.

error state probability

E0=I⊗I⊗I α |000〉+ β |111〉 ( 1-p )3

E1=X⊗I⊗I α |100〉+ β |011〉 p( 1-p )2

E2=I⊗X⊗I α |010〉+ β |101〉 p( 1-p )2

E3=I⊗I⊗X α |001〉+ β |110〉 p( 1-p )2

E4=X⊗X⊗I α |110〉+ β |001〉 p2(1− p)
E5=I⊗X⊗X α |011〉+ β |100〉 p2(1− p)
E6=X⊗I⊗X α |101〉+ β |010〉 p2(1− p)
E7=X⊗X⊗X α |111〉+ β |000〉 p3
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After recieving the qubits, the reciever can detect the position of the error by measuring Z⊗Z⊗I

and I⊗Z⊗Z.

Z|0〉 = |0〉, Z|1〉 = -1|0〉

stabilizer state eigenvalue

S1=Z⊗Z⊗I α |000〉+ β |111〉 1

S2=I⊗Z⊗Z α |000〉+ β |111〉 1

S1=Z⊗Z⊗I α |100〉+ β |011〉 -1

S2=I⊗Z⊗Z α |100〉+ β |011〉 1

S1=Z⊗Z⊗I α |010〉+ β |101〉 -1

S2=I⊗Z⊗Z α |010〉+ β |101〉 -1

S1=Z⊗Z⊗I α |110〉+ β |001〉 1

S2=I⊗Z⊗Z α |110〉+ β |001〉 -1

S1=Z⊗Z⊗I α |011〉+ β |100〉 -1

S2=I⊗Z⊗Z α |011〉+ β |100〉 1

S1=Z⊗Z⊗I α |101〉+ β |010〉 -1

S2=I⊗Z⊗Z α |101〉+ β |010〉 -1

S1=Z⊗Z⊗I α |111〉+ β |000〉 1

S2=I⊗Z⊗Z α |111〉+ β |000〉 1

If, only a maximum of single bit flip occurs we can identify the position of the bit flip by

measuring the eigenvalues of S1, S2.

The group generated by S1 and S2 under composition is called the stabilizer of the code. All valid

codewords will have eigenvalue 1 for all elements of this group.

One can measure eigenvalues of S1, S2 using two syndrome qubits.First perform two CNOT’s from

the first and second qubit to the first syndrome,followed by two CNOT’s from the second and

third qubit to the second syndrome.
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state probability

(α |000〉+ β |111〉) |00〉 ( 1-p )3

(α |100〉) + β |011〉 |10〉 p( 1-p )2

(α |010〉+ β |101〉) |11〉 p( 1-p )2

(α |001〉+ β |110〉) |01〉 p( 1-p )2

(α |110〉+ β |001〉) |01〉 p2(1− p)
(α |011〉+ β |100〉) |10〉 p2(1− p)
(α |101〉+ β |010〉) |11〉 p2(1− p)
(α |111〉+ β |000〉) |00〉 p3
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Then the reciever can perform the following actions to recover the encoded qubit.

syndrome action

00 do nothing

10 apply X to first qubit

01 apply X to third qubit

11 apply X to second qubit

This scheme can correct errors (E0, E1, E2, E3) which can have a maximum of 1 bit flip. The

success probability of this scheme is (1− p)3 + 3p3 and fails with a probability 3p2(1− p) + p3.

For low ’p’ this can work very well.

We can get rid of the syndrome qubits by using the circuit below. The gate at the end is the

Toffoli gate or CCX gate.

CCX(q0, q1, q2) |q0, q1, q2〉 = |q0 ⊕ (q1 ∧ q2), q1, q2〉

encode

|ψ〉

noisy channel correction

Figure 29: Circuit for Repetition Code without Syndrome

4.3.2 9-Qubit Shor Code

3-Qubit Repetition Code can only correct bit-flip errors or phase errors. For a code to be able to

correct an arbitrary continuous error it is sufficient for it to be able to correct bit-flip (σx) and

phase error (σz) together. Such a code can correct σy error also since σy = iσxσz. Any unitary

error can be broken down into sum of these 3 errors. Shor 9-Qubit Code is an example of General

Error Correcting Code. The encoding scheme is shown below,

|0〉 → |0〉L =
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

2
√

2
(23)
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|1〉 → |1〉L =
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

2
√

2
(24)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

S1 Z Z I I I I I I I

S2 I Z Z I I I I I I

S3 I I I Z Z I I I I

S4 I I I I Z Z I I I

S5 I I I I I I Z Z I

S6 I I I I I I I Z Z

S7 X X X X X X I I I

S8 I I I X X X X X X

Stabilizer Group for the Shor 9-Qubit Code

encode

|ψ〉
correction

|0〉

|0〉

H

H

H

H

H

H

Figure 30: Circuit for 9-Qubit Shor Code
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4.3.3 Toric Code

A qubit is placed on each link of a square lattice with periodic boundaries, i.e, the top edge is joined

to the bottom edge and the left edge is joined to the right edge. This will yield a torus. This is

the physical Hilbert space of the code. For a N × N Lattice there will be 2N2 edges ( V-E+F =

2-2g ,g(no of genus =1, since a torus has a hole) and therefore, the Hilbert Space has dimension

n = 22N
2

.

For every square on the lattice (comprising 4 qubits, one on each link). A Stabilizer Generator

Ap(called face Operator) is defined as:

Ap = Z ⊗ Z ⊗ Z ⊗ Z (25)

This is a Pauli Z operator acting on each of the four qubits and identity every where else.There are

N2 such Stabilizers one for each square in the Lattice.

Similarly, for each square on the dual Lattice , Bs(called Star Operator) is defined as:

Bs = X ⊗X ⊗X ⊗X (26)

Each Ap, Bs has eigenvalues ±1 (since, A2
p = B2

s = I). There will be N2 such stabilizers one for

each square in the Dual Lattice. All of these stabilizers mutually commute. It’s easy to check

for [As, As] = [Bp, Bp] = 0 because Pauli operators commute with themselves and I. More care is

required with [As, Bp] = 0 since, these two terms either have 0 or 2 sites in common, and pairs of

different Pauli operators commute, [XX,ZZ]=0. This is illustrated below:

Figure 31: Neighbouring As and Bp commutes. The Dual Lattice is denoted by dotted lines.

The Stabilizer Group is the Group Spanned by As and Bp under Composition. This will be the

set of all Loops of Z - operators on the real Lattice and Loops of X - operators on the dual Lattice

with trivial Homology. This is illustrated below:
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Figure 33 Figure 34

Figure 32: Stabilizer Group of the Toric Code

Since all Ap, Bs commute, the logical codespace is their simultaneous +1 eigenspace.

∀p : Ap |ψ〉 = |ψ〉 ,∀s : Bs |ψ〉 = |ψ〉 (27)

∏
pAp =

∏
sBs = I since each qubit is included in two stars and two faces. This means that

one of the Ap and one of the Bs is dependent on all the others. Therefore, there will be N2 − 1

independent Ap, Bs and the dimension (k) of the Stabilizer Group (S) is 2N2 − 2. The dimension

of the Logical Code Space will be 2n−k = 22N
2−(2N2−2) = 22 and can encode 2 Qubits.

Loops with non-trivial homology (loops that winds around the Torus) will commute with the Sta-

bilizer but will not lie in the Stabilizer Group. This is illustrated in Figure 36. This forms the set of
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undetectable errors (Z(S)− (S)). The Logical Operators (Z1,L, Z2,L, X1,L, X2,L) are chosen to be

Figure 35: Loops of Z operators that winds around the Torus commutes with Bs since they meet

at exactly 0 or 2 points. loops of X operators that winds around the torus commutes with Ap by

the same logic.

the smallest weight independant operators in Z(S) − (S) that generate the algebra of two qubits,

i.e, commutation of operators on the two different logical qubits:

[X1,L, X2,L] = 0, [X1,L, Z2,L] = 0, [Z1,L, Z2,L] = 0, [Z1,L, X2,L] = 0 (28)

and anti-commutation of the two on each qubit:

{X1,L, Z1,L} = 0, {X2,L, Z2,L} = 0 (29)

The logical basis state is defined as:

|ψx,y〉 : Z1,L |ψx,y〉 = (−1)x |ψx,y〉 , Z2,L |ψx,y〉 = (−1)y |ψx,y〉 for x,y ∈ {0, 1}

The weight of X1,L, Z1,L, X2,L, Z2,L will be N hence, Toric Code has a distance N.

The observed eigenvalues of the stabilizers provide a “syndrome” that can be used to diagnose

errors. If there are no errors in the code block, then every syndrome takes the value 1. Since each

stabilizer is associated with a definite position on the surface, a site of the lattice or the dual lattice,

the syndrome can be listed by all positions where the stabilizers take the value 1. It is convenient to

regard each such position as the location of a particle, a “defect” in the code block. If errors occur

on a particular chain (a set of links of the lattice or dual lattice), then defects occur at the sites

on the boundary of the chain. These are called Anyon Chains and the defects are called Anyons.

This error can be corrected by linking the Anyons to form a homologically trivial loop. Such loops

will be present in the stabilizer and will act trivially on the codespace. For any given error chain,
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there will be many different ways to connect the endpoints and thus the Toric Code is degenerate.

Usually, the chain with the lowest weight is chosen.Finding the most optimal chain for correction

is called as the syndrome decoding problem.It is in general an NP hard problem and one can use

machine learning algorithms for doing this.

The Stabilizer Hamiltonian(Hs) is defined as:

Hs = −(
∑
p

Ap +
∑
s

Bs) (30)

Figure 36: Operators that are supposed to commute do not meet and operators that are supposed

to anti-commute meet at exactly one site, with an X and a Z

The lowest energy state of this Hamiltonian will be the state where there is no error and all

syndromes take the value 1. Any error chain(ZC or Xc) will increase the energy by 2 and can be

considered as a creation operator for a Quasi-Particle (Anyons). Anyons are analogous to electric

charges because they are always formed in pairs.
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Figure 37: Correction of a chain of Z errors in the real lattice

Figure 38: Correction of a chain of X errors in the dual lattice

4.3.4 Surface Codes

Toric code corrects errors based on their topological features. Such stabilizer codes are called

Topological Codes. Surface Codes are a special class of topological codes, where the physical
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Hilbert space of the code is a set of Qubits placed on a graph that can be embedded on a 2D

surface.Toric code is a surface code where the underlying surface is a Torus.

4.3.4.1 Planar Surface Codes

Planar surface code is a surface code with the physical qubits embedded on a plane. These codes

are easier to implement with the actual hardware.

Figure 39: Planar Surface Codes, Source[16]

in the above figure the white dots are the data qubits and the black dots are the syndrome qubits

used for correction.Here there are 41 data qubits(i.e n = 41) and 40 stabilizers(i.e k = 40). This

code can store 1 logical Qubit(n-k).The chains(X̂L, ẐL) are the logical X and Z operators.These

operators satisfy the usual commutation relations for X and Z operators. Since these operators

have a weight 5 the distance of the code is 5.

We can introduce logical qubits on to a surface code by punching holes in the underlying

graph.That is by turning off X or Z Stabilizer. If we turn of X stabilizers it is called an X-cut

qubit other wise a Z-cut Qubit.
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Figure 40: Z-cut and X-cut qubits, Source [16]

the logical operators(XL and ZL) satisfy the usual commutation relations. The distance of

the code can be increased arbitrarily by increasing the weight of the logical operators.These defect

qubits can be moved throughout the lattice by appropriately switching off and turning on stabilizers

sequentially.This can be used to perform logical CNOT gates by braiding a Z-cut qubit around a

X-cut qubit.

4.3.4.2 Logical CNOT by Braiding

there are different schemes for doing logical two qubit CNOT gates in a surface code architecture.

Braiding defect qubits,Lattice Surgery,using twist defects. Here i am exploring the method of

braiding defect qubits.

the CNOT gate have the following action on logical operators X̂, Ŷ in heisenberg picture.

CNOT †(Î ⊗ X̂)CNOT = Î ⊗ X̂
CNOT †(X̂ ⊗ Î)CNOT = X̂ ⊗ X̂
CNOT †(Î ⊗ Ẑ)CNOT = Ẑ ⊗ Ẑ
CNOT †(Ẑ ⊗ Î)CNOT = Ẑ ⊗ Î
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Figure 41: CNOT†(Î ⊗ Ẑ)CNOT = Ẑ ⊗ Ẑ
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Figure 42: CNOT†(X̂ ⊗ Î)CNOT = X̂ ⊗ X̂
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5 Hardware Bench-marking of IBMQ Quantum Computer

Quantum Computing is in the NISQ (Noisy Intermediate Scale Quantum computing) era. The

Quantum Computers we have now are not ideal and Quantum Gates are often Noisy. Benchmarking

is done to analyse the efficiency of a Quantum Computer. Here I am trying to Benchmark the

performance of the IBMQ Quantum Computer which anyone can use online for doing experiments.

The fidelity(f) between two states |ψ1〉 and |ψ2〉 is the inner product between the two. This is a

measure of closeness between the two states. The programing was done using Qiskit[11].

Figure 43: Plot of fidelity vs number of two qubit gates
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6 Quantum Machine Learning

Quantum machine learning is an emerging field at the interface of quantum computing and machine

learning. Both quantum circuits as well as neural networks (class of Machine Learning technique)

can be modelled as tensor networks. Tree tensor networks are a type of tensor network used in

condensed matter physics. Here, I am trying to make a binary classifier that can classify between

two types of flowers based on 4 real-valued features (the length and the width of the sepals and

petals) based on [10]. The classification is done by optimising a parametric tree tensor network

based on a quantum circuit. The feature vectors are scaled element-wise to lie in [0, π2 ] and are

encoded as the state of a 4-qubit wavefunction by the following encoding scheme:

|ψdn〉 = cos(xdn) |0〉+ sin(xdn) |1〉 (31)

Here xdn is the n-th feature of the d-th feature vector. The four qubit input wavefunction after

encoding becomes:

|ψd1〉 ⊗ |ψd2〉 ⊗ |ψd3〉 ⊗ |ψd4〉 (32)

This state is passed through the following parametric TTN circuit:

ψ1 Ry(θ1)

ψ2

ψ3

ψ4

Ry(θ2)

Ry(θ3)

Ry(θ4)

Ry(θ5)

Ry(θ7) Ry(θ8) Z

Figure 44: Parametric TTN Classifier

The expectation value of the measurement is considered as the predicted label for the flower. The

parameters θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8 are optimised using gradient descent for the given training set.

The optimistion was done using PennyLane[11] and Qiskit[10].

The performance of the Circuit is given below.
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Figure 45: Plot of Cost vs Number of Steps

Figure 46: Plot of Training and Test accuracy vs Number of Steps
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7 Summary

Quantum Computing has the potential to provide a paradigm shift in computing. To realise this

potential, Error Correcting codes are crucial. Through this research work, an extensive study of

Quantum Error Correction was carried out. Simulations were done for variational Quantum Error

Correcting codes. The most promising codes are surface codes, therefore attempt was made to

simulate arbitrary surface codes and experiment with decoding algorithms for the same.
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