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ABSTRACT

Starting from the Maxwell’s equations, many essential concepts of classical electrody-

namics have been reviewed. Modal propagation of confined electromagnetic waves has

been illustrated in the case of parallel plate wave guide and rectangular wave guide by

using Maxwell’s equations. The concepts and tools hence developed have been utilised

in the analysis of rectangular resonating cavity. Optical cavities and micro cavities are

introduced leading to the study of spontaneous emission in micro cavities.
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Chapter 1

INTRODUCTION

High frequency electromagnetic waves can be transferred from one place to another using

hollow metallic structures called wave guides. The behaviour of electromagnetic waves is

quite different when they are made to propagate through wave guides. They are no more

transverse in general and they do exhibit different modes. When the open ends of these

wave guides are closed by metal plates of high conductivity we have the so called cavity

resonator. A cavity resonator is basically a closed structure which stores electromagnetic

energy. The electric and magnetic fields are present in the cavities in the form of standing

waves.

The main objective of this project work is to investigate spontaneous emission in

optical micro cavities. As a part of the work, this report contains, in its first part,

the study of essential elements of basic electrodynamics including Maxwell’s equations,

solutions of Maxwell’s equation, gauge transformations. In the second part analysis of

parallel plate wave guide and rectangular wave guide is carried out. A study of variation

of impedance in rectangular wave guides with frequency has been done. Finally we have

solved for rectangular resonating cavity. Then we turn our attention to optical cavities.

Micro cavities and spontaneous emission in optical cavities have been introduced which

are needed in further investigation of spontaneous emission in micro cavities in the course

of our work.
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Chapter 2

REVIEW OF

ELECTRODYNAMICS

2.1 Review of Maxwell’s equations

2.1.1 Maxwell’s equations

The equations governing electromagnetic phenomena are known as Maxwell’s equations.

Before Maxwell, electrodynamics had four fundamental equations as follow.

~∇ · ~E =
ρ

ε0
(2.1)

~∇ · ~B = 0 (2.2)

~∇× ~E = −∂
~B

∂t
(2.3)

~∇× ~B = µ0
~J (2.4)

Where ~E is the electric field and ~B is the magnetic field, ρ is the charge density and ~J

is the current density. Here, equation (2.1) is called Gauss’s law in electrostatics, (2.3)

is called Faraday’s law and (2.4) is called Ampere’s law in magnetostatics. If we apply

divergence to the Ampere’s law we get,

~∇ · (~∇× ~B) = µ0(~∇ · ~J) (2.5)

the left side must be zero, but the right side, in general, is not. The divergence of ~J

fails to vanish in the case of non-steady currents. Maxwell corrected this discrepancy of

Ampere’s law to hold outside magnetostatics. Applying continuity equation and Gauss’s

law we have

~∇ · ~J = −∂ρ
∂t

= −∂(ε0~∇ · ~E)

∂t
= −~∇ ·

(
ε0
∂ ~E

∂t

)
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hence by combining
(
ε0
∂ ~E
∂t

)
with ~J , in Ampere’s law we get its general form:

~∇× ~B = µ0
~J + µ0ε0

∂ ~E

∂t

Maxwell called his extra term the displacement current

~Jd = ε0
∂ ~E

∂t

Hence the Maxwell’s equations are :

~∇ · ~E =
ρ

ε0
(2.6)

~∇ · ~B = 0 (2.7)

~∇× ~E = −∂
~B

∂t
(2.8)

~∇× ~B = µ0
~J + µ0ε0

∂ ~E

∂t
(2.9)

Together with the force law,
~F = q( ~E + ~v × ~B) (2.10)

They summerize the content of classical electrodynamics. The continuity equation

~∇ · ~J = −∂ρ
∂t

(2.11)

which is the mathematical expression of conservation of charge, can be derived from the

Maxwell’s equations by applying divergence to number (2.9).

In free space where ρ and ~J vanish Maxwell’s equations take the form:

~∇ · ~E = 0

~∇ · ~B = 0

~∇× ~E = −∂
~B

∂t

~∇× ~B = µ0ε0
∂ ~E

∂t

[1, 2]

2.1.2 Maxwell’s equations in matter

For the materials that are subject to electric and magnetic polarization the Maxwell’s

equations take a different form. For these materials there would be bound charges and
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currents. Hence Maxwell’s equations are reformulated so as to make the explicit reference

only to the free charges and currents.

In the static case, an electric polarization ~P produces a bound charge density

ρb = −~∇ · ~P

Likewise a magnetic polarization ~M results in a bound current

~Jb = ~∇× ~M

In the non-static case, any change in electric polarization involves a flow of bound charges

which should be included in the total current.

~Jp =
∂ ~P

∂t

Hence the total charge density can be separated into two parts:

ρ = ρf + ρb = ρf − ~∇ · ~P

and current density into three parts.

~J = ~Jf + ~Jb + ~Jp = ~Jf + ~∇× ~M +
∂ ~P

∂t

Gauss’s law now becomes,

~∇ · ~E =
1

ε0
(ρf − ~∇ · ~P )

or
~∇ · ~D = ρf

where, as in the static case
~D = ε0 ~E + ~P

Meanwhile, Ampere’s law (with Maxwell’s term) becomes

~∇× ~B = µ0

(
~Jf + ~∇× ~M +

∂ ~P

∂t

)
+ µ0ε0

∂ ~E

∂t

or

~∇× ~H = ~Jf +
∂ ~D

∂t

where as before,

~H =
1

µ0

~B − ~M

4



Faraday’s law and ~∇ · ~B = 0 are not affected by this separation of charge and current

into free and bound parts.

Hence in terms of free charges and free currents Maxwell’s equations become,

~∇ · ~D = ρf (2.12)

~∇ · ~B = 0 (2.13)

~∇× ~E = −∂B
∂t

(2.14)

~∇× ~H = ~Jf +
∂ ~D

∂t
(2.15)

For linear media,
~P = ε0χe ~E, and ~M = χm ~H

so
~D = ε ~E and ~H =

1

µ
~B

where ε = ε0(1 + χe) and µ0(1 + χm). ~D is called electric displacement and,

~Jd =
∂ ~D

∂t

2.1.3 Boundary conditions

In general, the fields ~E, ~B, ~D, ~H will be discontinuous at a boundary between two different

media, or at a surface that carries a charge density σ or a current density ~K.These can

be deduced from the Maxwell’s equations in integral form.∮
S

~D · d~a = Qf (2.16)∮
S

~B · d~a = 0 (2.17)∮
P

~E · d~l = − d

dt

(∫
S

~B · d~a
)

(2.18)∮
P

~H · d~l = If +
d

dt

(∫
S

~D · d~a
)

(2.19)

If ~D1 and ~D2 are the electric displacements below and above an interface having a sur-

face charge density σf then equation (2.16) implies that the component of ~D that is

perpendicular to the interface is discontinuous in the amount

D⊥1 −D⊥2 = σf (2.20)

5



In the same way equation (2.17) implies that,

B⊥1 −B⊥2 = 0 (2.21)

Equation (2.18) implies that the components of ~E parallel to the interface are continuous

across the boundary.

E
‖
1 − E

‖
2 = 0 (2.22)

Let ~Kf be a surface current on the interface and n̂ a unit vector perpendicular to the

surface then from equation (2.19) we can show that

H
‖
1 −H

‖
2 = ~Kf × n̂ (2.23)

Hence the parallel components of ~H are discontinuous by an amount proportional to the

surface current density. These are general boundary conditions for electrodynamics. [1, 2]

2.1.4 Electromagnetic waves

Consider Maxwell’s equations in free space where there is no charge or current. They

are a set of coupled, coupled first order partial differential equations for ~E and ~B. Now

consider,

~∇× (~∇× ~E) = ~∇(~∇ · ~E)−∇2 ~E = ~∇×

(
−∂

~B

∂t

)

= − ∂

∂t
(~∇× ~B) = −µ0ε0

∂2 ~E

∂t2

since ~∇ · ~E = 0, we have

∇2 ~E = µ0ε0
∂2 ~E

∂t2
(2.24)

Similarly,

∇2 ~B = µ0ε0
∂2 ~B

∂t2
(2.25)

These two equations imply that electromagnetic waves travel through empty space with

the velocity of light

v =
1

√
µ0ε0

= 3.00× 108 m/s (2.26)

The electromagnetic wave equations (2.24) and (2.25) have plane wave and spherical wave

solutions. [1, 2]
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2.1.5 Properties of electromagnetic waves

• Electromagnetic waves are transverse: the electric and magnetic fields are perpen-

dicular to the direction of propagation. If we consider a plane wave travelling in the

z-direction and E0 and B0 are the respective amplitudes then Faraday’s law implies

that B0 = k
ω
E0 = 1

c
E0

• Monochromatic plane electromagnetic waves are polarized. The direction of ~E is

used to specify the polarization of an electromagnetic wave.

• As the wave travels, it carries energy along with it. The energy flux density trans-

ported by the fields is give by the Poynting vector : ~S = 1
µ0

( ~E× ~B). For monochro-

matic plane electromagnetic waves propagating int the z-direction, ~S = cuẑ where u

is the energy per unit volume in the electromagnetic fields and is given by u = ε0E
2.

• The average power per unit area transported by an electromagnetic wave is called

the intensity : I = 1
2
cε0E

2
0 [1]

2.2 Laplace’s equation

In electrostatics[2,4], we need to find the electric field of a given stationary charge distri-

bution. The purpose is to find,

~E(r) =
1

4πε0

∫
ρ(~r′) (~r − ~r′) dτ ′

|~r − ~r′|3
(2.27)

But often it is difficult to calculate ~E directly using this formula. So it is best and easy

to calculate the potential first and taking its negative gradient to calculate the electric

field ~E.

V (~r) =
1

4πε0

∫
ρ(~r′) dτ ′

|~r − ~r′|
(2.28)

In the case of problems involving conductors ρ is not known. So it is useful if we re-frame

the problem in differential form, using Poisson’s equation,

∇2V = − 1

ε0
ρ (2.29)

If ρ = 0, in the region where there is no charge, the Poisson’s equation reduces to Laplace’s

equation.

∇2V = 0 (2.30)

or
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0

7



Any function that has continuous partial derivatives of second order and satisfies Laplace’s

equation is called a Harmonic function. In terms of complex variables, if a function

f(z) = u(x, y) + iv(x, y) is analytic then u and v are harmonic functions.[1, 2]

2.2.1 Laplace’s equation in one dimensions

In one dimensions Laplace’s equation is simply,

d2V

dx2
= 0

and evidently its solution is,

V (x) = mx+ b (2.31)

The solutions given by equation (2.31) have the following features:

• V (x) is the average of V (x+ a) and V (x− a) for any a.

• Laplace’s equation tolerates no local maxima or minima. Extreme values hence

occur at the end points. [1]

2.2.2 Laplace’s equation in two dimensions

Here V depends on two variables and hence,

∂2V

∂x2
+
∂2V

∂y2
= 0

Harmonic functions in two dimensions have the following properties :

• The value of V (x, y) at a point (x, y) is the average of the values of V around the

point (x, y). That is if we consider a circle of radius R with (x, y) as the centre,

then the value of V (x, y) is the average value of V on the circle.

V (r) =
1

2πr

∮
(circle)

V dl

• As in one dimensional case, V has no local maximum or minimum. Solution to

Laplace’s equation in two dimensions is the smoothest conceivable surface and it is

the minimum surface spanning a given boundary line.[1]

2.2.3 Laplace’s equation in three dimensions

In three dimensions,
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0

8



Similar to one and two dimensions, the value of V at a point ~r is equal to the average of

the values of V on a sphere of radius R with the centre at ~r.

V (r) =
1

4πR2

∮
(sphere)

V da

As a consequence V can have no local maxima or minima. The extreme values occur at

the boundary.[1]

2.2.4 Boundary conditions and Uniqueness theorem

To find the complete solution to Laplace’s equation we need to have boundary conditions

to evaluate the constants. But how many boundary conditions are required? Is a given

set of boundary conditions is sufficient to have consistent and complete solution? All

these questions are answered by Uniqueness theorems. In one dimensions, it is obvious

that we should have two boundary conditions such as the value of the function at the end

points or the value of the function and the value of the derivative at an end point etc.,

But in two and three dimensions it is a difficult question to answer.

2.2.5 First uniqueness theorem

The solution to Laplace’s equation in some volume ν is uniquely determined if V is

specified on the boundary surface S. [1]

Corollary: The potential in a volume ν is uniquely determined if (a) charge density

throughout the region and (b) the value of V on all the boundaries are specified.

2.2.6 Second uniqueness theorem

In a volume ν surrounded by conductors and containing a specified charge density ρ, the

electric field is uniquely determined if the total charge on each conductor is given.[1]

This theorem guarantees the uniqueness of solution for electric field inside a volume

V containing conducting materials having some charge. For the uniqueness we should be

given with total charge present on the conductors. [1, 2]

9



2.3 General solutions of Maxwell’s equations

Maxwell’s equations are given by,

~∇ · ~E =
1

ε0
ρ (2.32)

~∇ · ~B = 0 (2.33)

~∇× ~E = −∂
~B

∂t
(2.34)

~∇× ~B = µ0
~J + µ0ε0

∂ ~E

∂t
(2.35)

We have to find ~E(r, t) and ~B(r, t) given ρ(r, t) and ~J(r, t). In the static case these

are determined by Coulomb’s law and Biot-Savart’s law. Let us generalise these to time

dependent case.

In the dynamic case ~∇ · ~B = 0 still holds. But electric field has a non zero curl. Since ~B

is still divergenceless we can write,

~B = ~∇× ~A

Where, ~A is called Magnetic vector potential. With this equation (2.45) now implies,

~∇×

(
~E +

∂ ~A

∂t

)
= 0

Hence we can find a scalar potential V such that

~E +
∂ ~A

∂t
= −~∇V

Therefore, finally we have,

~E = −∂
~A

∂t
− ~∇V (2.36)

~B = ~∇× ~A (2.37)

This potential formulation of ~E and ~B readily satisfy the two homogeneous Maxwell’s

equations. So we shall put them in the remaining two inhomogeneous equations to get

~∇ · ~E =
1

ε0
ρ

~∇ ·

(
−∂

~A

∂t
− ~∇V

)
=

1

ε0
ρ

10



Or

∇2V +
∂

∂t

(
~∇ · ~A

)
= − 1

ε0
ρ (2.38)

This equation reduces to Poisson’s equation when ~A is a constant. In the same way

equation (2.46) becomes,

~∇× ~B = µ0
~J + µ0ε0

∂ ~E

∂t

~∇× ~B = µ0
~J + µ0ε0

∂

∂t

(
−∂

~A

∂t
− ~∇V

)

~∇×
(
~∇× ~A

)
= µ0

~J + µ0ε0
∂

∂t

(
−∂

~A

∂t
− ~∇V

)
Or (

∇2 ~A− 1

c2
∂2 ~A

∂t2

)
− ~∇

(
~∇ · ~A+

1

c2
∂V

∂t

)
= −µ0

~J (2.39)

Equations (2.49) and (2.50) contain all the information in Maxwell’s equations.[3, ?]

2.3.1 Gauge transformations

: Even though potential formulation helps us to reduce Maxwell’s equations to two equa-

tions (2.49) and (2.50), still these equations are coupled second order partial differential

equations which are not easy to solve. We can decouple these equations by imposing

conditions on the potentials ~A and V by exploiting the arbitrariness involved in their

definitions. The potentials as defined by equations (2.47) and (2.48) are not unique. We

can find some other ~A and V such that they give same electric and magnetic fields. Let

us denote the new potentials by ~A′ and V’.

~A′ = ~A+ ~α and V ′ = V + β

Hence,

~α = ~∇λ, where λ is a scalar fuction.

Since the two potentials also give the same ~E ,

~E = −∂
~A′

∂t
− ~∇V ′

⇒ ~E = −∂
~A

∂t
− ~∇V −

∂
(
~∇λ
)

∂t
+ ~∇β
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Hence we must have,

~∇
{
β +

∂λ

∂t

}
= 0

Therefore,

β = −∂λ
∂t

+ k(t)

We can absorb k(t) into lambda, thus

β = −∂λ
∂t

Hence we conclude that we can find ~A′ by adding a gradient of some scalar function λ(r, t)

to ~A to get the same old electric and magnetic fields provided we subtract ∂λ
∂t

from V at

the same time. Finally we have,
~A′ = ~A+ ~∇λ

V ′ = V − ∂λ

∂t

Such transformations of potentials which give same electric and magnetic fields are called

Gauge transformations. We can impose conditions on ~A and V using gauge transforma-

tions to simplify the problems of finding the electric and magnetic fields. [1, 3]

2.3.2 The Coulomb Gauge

The gauge which is chosen such that ~∇ · ~A = 0 is called the Coulomb gauge. Hence in

this gauge equation (2.49) becomes,

∇2V = − 1

ε0
ρ

This is Poisson’s equation which can be solved and the solution is given by,

V (r, t) =
1

4πε0

∫
ρ(~r′, t)

|~r − ~r′|
dτ ′

The other vector potential satisfies the inhomogeneous wave equation;

∇2 ~A− 1

c2
∂2 ~A

∂t2
= −µ0

~J +
1

c2
~∇
{
∂V

∂t

}
Advantage of this gauge is that the scalar potential V is easy to calculate but at the same

time it is difficult to calculate the vector potential. This gauge is often used when there

are no sources are present and in that case the vector potential satisfies the homogeneous

wave equation. [1, 3]
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2.3.3 The Lorenz Gauge

: In this gauge we chose ~A such that,

~∇ · ~A+
1

c2

{
∂V

∂t

}
= 0

Hence with this gauge equation (2.50) becomes,

∇2 ~A− 1

c2
∂2 ~A

∂t2
= −µ0

~J (2.40)

Meanwhile differential equation for V equation (2.49) becomes,

∇2V − 1

c2
∂2V

∂t2
= − ρ

ε0
(2.41)

Hence ~A and V are treated on equal footing by the Lorenz gauge. The same differential

operator

∇2 − 1

c2
∂2

∂t2
= �2

(called thed’Alembertian) occurs in both the equations.

�2V = − 1

ε0
ρ (2.42)

�2 ~A = −µ0
~J (2.43)

The d’Alembertian is the generalization of the Laplacian and equations (2.53) and (2.54)

can be regarded as four dimensional Laplace’s equation. [1, 3]
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Chapter 3

WAVE GUIDES

3.1 wave guides

3.1.1 Introduction

A wave guide is generally a linear structure that allows electromagnetic waves to pass

between its ends. In most cases a wave guide is a hollow metallic pipe which is used

to pass radio and microwave frequencies without much power loss. Wave guides can

also be constructed by using dielectric materials depending on the frequencies to be

conveyed through them. When we are working with low frequencies typically less than

200 MHz sending electromagnetic signals through either parallel transmission lines or

co-axial cables is fairly common place. But once the frequency is higher we need special

structures like wave guides in order to send electromagnetic waves from one place to

another.

Electromagnetic wave guides are analysed by solving Maxwell’s equations with bound-

ary conditions specified by the properties of the materials used and their interfaces. These

equations have many solutions which are called modes and each mode has a particular

cut-off frequency below which that mode can not exists in the wave guide.

We know that electric field inside a metallic conductor is zero and hence by faraday’s

law the magnetic field is also zero. Then the boundary condition which come into picture

are as follows.

E‖ = 0 (3.1)

H⊥ = 0 (3.2)

Since metals are good conductors they have free charges on their surface and presence

of a parallel electric field would set up surface currents. This leads to the first boundary

condition. The absence of the parallel component of the electric field will not induce

magnetic fields perpendicular to the surface of the wave guide, hence we have the second

14



boundary condition. We assume that waves travel down the wave guide in the z-direction,

the electric and magnetic fields have a time dependence of eiωt and these fields should

obey Maxwell’s equations which are given by,

~∇ · ~E = 0 (3.3)

~∇ · ~H = 0 (3.4)

~∇× ~E = −µ∂
~H

∂t
(3.5)

~∇× ~H = ε
∂ ~E

∂t
(3.6)

Our task is to find E(x, y, z, t) and H(x, y, z, t) such that they obey Maxwell’s equations

with the boundary conditions (3.1)and (3.2).

Consider the two curl equations. Since we are assuming the time dependence of the

fields as eiωt, the derivative with respect to time of electric and magnetic fields is just

multiplying them with iω. Hence equation (3.5) can be written as,

~∇× ~E = −µ∂
~H

∂t
= −iµω ~H

Taking curl on both sides we have,

~∇×
(
~∇× ~E

)
=~∇(~∇ · ~E)−∇2 ~E

=~∇×

(
−µ∂

~H

∂t

)

=− i µ ω(~∇× ~H)

=− i µ ω( ~J + i ε ω ~E)

=− i µ ω(σ ~E + i ε ω ~E)

∇2 ~E =i µ ω(σ + i ε ω) ~E

Since we are considering wave guides having air or vacuum between the plates, σ, the

conductivity is essentially zero. Hence,

∇2 ~E = −µεω2 ~E (3.7)
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Similarly one can obtain the corresponding equation for the magnetic field,

∇2 ~H = −µεω2 ~H (3.8)

In the next step we would write explicitly all the components of the equations (3.5)

and (3.6) namely Faraday’s law and Ampere’s law respectively. We will get two sets of

equations.

∂Hz

∂y
− ∂Hy

∂z
= iεωEx (3.9)

∂Hx

∂z
− ∂Hz

∂x
= iεωEy (3.10)

∂Hy

∂x
− ∂Hx

∂y
= iεωEz (3.11)

The other set of equations corresponding to Faraday’s law (3.5) are given by,

∂Ez
∂y
− ∂Ey

∂z
= −iµωHx (3.12)

∂Ex
∂z
− ∂Ez

∂x
= −iµωHy (3.13)

∂Ey
∂x
− ∂Ex

∂y
= −iµωHz (3.14)

We will solve these sets of equations with appropriate boundary conditions to deduce the

behaviour of confined electromagnetic waves. [1, 4]

3.1.2 Modal propagation

In free space, electromagnetic waves are transverse. But when confined they may lose

this feature. In general electromagnetic waves are not transverse in wave guides and they

exhibit different modes. These modes are classified as Transverse electric mode(TE

mode), Transverse magnetic mode(TM mode) and Transverse electromagnetic

mode(TEM mode). If we consider z-direction to be the direction of propagation then in

TE mode the longitudinal component of the electric field EZ is equal to zero. Similarly

in TM mode the longitudinal component of the magnetic field Hz is zero. In very rare

cases both Ez and Bz is zero. Such a mode is called TEM mode.

3.2 Parallel plate wave guide

Consider two infinite parallel perfectly conducting metal plates separated by a distance

’d’ in the x-direction as shown in the figure (3.a). Assume that the plates are infinite

in y and z direction and we are sending electromagnetic waves in z-direction. Since the
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boundaries are x = 0 and x = d, the boundary condition to be satisfied is Ey = 0 at

x = 0 and x = a. Under these circumstances the electric field can be written in the form,

figure (3.a): Parallel plate wave guide

~E(x, y, z) = E(x, y)eiωt−γz (3.15)

Here the exponential part stands for propagation. γ is in fact a complex quantity given

by, γ = α+iβ where α stands for attenuation and β stands for propagation. If we consider

the medium between the plates to be air or vacuum this γ would either be attenuative

or propagative. There are no boundary condition to be met in y-direction and hence

derivative of the fields with respect to y is zero. The form of the electric field tells us

that derivative with respect to z is same as multiplying with −γ. Therefore the set of

equations (3.9)-(3.11) and (3.12)-(3.14) become,

γHy = iωεEx (3.16)

−γHx −
∂Hz

∂x
= iωεEy (3.17)

∂HY

∂x
= iωεEz (3.18)

In the same way,

γEy = −iµωHx (3.19)

−γEx −
∂Ez
∂x

= −iµωHy (3.20)

∂Ey
∂x

= −iµωHz (3.21)

And equations (3.7) and (3.8) become,

∇2 ~E = −ω2µε ~E (3.22)

∇2 ~H = −ω2µε ~H (3.23)
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Let us find the nature of the fields in the case of TE mode, that is when Ez = 0. For this

case, we would write equation (3.22) for Ey,

∂2Ey
∂y2

+ γ2Ey = −ω2µεEy

Defining k2 = γ2 + ω2µε we have,

∂2Ey
∂y2

+ k2Ey = 0 (3.24)

This is a well known equation whose solution is given by,

Ey = A sin kx+B cos kx

Applying boundary condition, Ey = 0 at x = 0 and at x = d we have,

Ey = Eo
y sin

(nπx
d

)
e−γz (3.25)

Where n = 1, 2, 3...... Obviously n = 0 is not possible.This equation implies that the

electric field lines are dense in mid way between the plates. By using equations (3.16) to

(3.21) we can find the remaining field components namely Hx and Hz

Hx =
−γ
iµω

Ey = −Eo
y

γ

iµω
sin
(nπx

d

)
e−γz (3.26)

Hz =
−1

iµω

∂Ey
∂x

=
−nπ
iµωd

Eo
y cos

(nπx
d

)
e−γz (3.27)

Now we find out the condition for propagation of these modes. For this γ should be

purely imaginary. We defined γ as,

γ2 = k2 − µεω2

γ =
√
k2 − µεω2

γ =

√(nπ
d

)2
− µεω2 = iβ

So for propagation,

ω2µε >
(nπ
d

)2
Hence the frequency of the electromagnetic wave should be greater than some critical

frequency which we call cut-off frequency for the propagation of a given mode. Otherwise
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γ will be purely real so that the mode will be attenuated. Cut-off frequency is given by,

ωc =
1
√
µε

nπ

d
(3.28)

Phase velocity of the wave is given by

vφ =
ω

β

=
ω√

ω2µε−
(
nπ
d

)2
As ω approaches ωc, phase velocity tends to infinity and for very large ω, it becomes

equal to the velocity of light.

We can find the components of electric and magnetic fields for TM-modes in the same

way as we did for TE mode. In this case we assume that Hz is zero. The resulting

components are given by

Hy = Ho
y cos

(mπx
d

)
e−iβz

Ex = Ho
y

β

ωε
cos
(mπx

d

)
e−iβz

Ez = Ho
y

imπ

ωεd
cos
(mπx

d

)
e−iβz

As we see clearly the solutions in TM mode have cosine functions. If we put m = 0 the

fields will not identically vanish. Hence TM mode with m = 0 have components,

Hz = 0, Ez = 0, Hy = Ho
y e
−iβz, Ex = Ho

y

β

ωε
e−iβz

We can conclude TM mode corresponding to m = 0 is identical to transverse electromag-

netic mode (TEM mode). [4]

3.3 Rectangular wave guide

Rectangular wave guide is a hollow metallic structure with rectangular cross section. This

structure is formed by closing the ends of a parallel plate wave guide in y-direction. Let

’a’ be its width and ’b’ be its height as shown in the diagram (3.b).As before z is the

direction of propagation. The metal plates are assumed to be perfectly conducting. The

time dependence of the the fields is considered as eiωt
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Figure (3.b) Rectangular wave guide

So the equation sets, (3.9)-(3.11) and (3.12-3.14) will take the following form.

∂Hz

∂y
+ γHy = iωεEx (3.29)

−γHx −
∂Hz

∂x
= iωεEy (3.30)

∂Hy

∂x
− ∂Hx

∂y
= iωεEz (3.31)

Similarly,
∂Ez
∂y

+
∂Ey
∂z

= −iωµHx (3.32)

−γEx −
∂Ez
∂x

= −iωµHy (3.33)

∂Ey
∂x
− ∂Ex

∂y
= −iωµHz (3.34)

Solving equation (3.9) and (3.13), we can express Ex in terms of derivatives of Hz and

Ez. In the same way we can also express Ey, Hx and Hy in this manner. Thus we have,

Ex = − γ

k2
∂Ez
∂x
− iµω

k2
∂Hz

∂y
(3.35)

Ey = − γ

k2
∂Ez
∂y
− iµω

k2
∂Hz

∂x
(3.36)

Hx = − γ

k2
∂Hz

∂x
+
iεω

k2
∂Ez
∂y

(3.37)

Hy = − γ

k2
∂Hz

∂y
− iεω

k2
∂Ez
∂x

(3.38)
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Where k2 = γ2 + µεω2. Now we shall find the expression for fields in TE mode. In this

case Ez = 0. This implies Hz 6= 0. Therefore equation (3.2) implies,(
∂2

∂x2
+

∂2

∂y2
+ γ2

)
H̃z(x, y) = 0

Here, Hz(x, y, z) = H̃z(x, y) e−γz We can solve the above equation by variable separable

by taking H̃z(x, y) = X(x)Y (y). The solution will be of the form,

X(x) = C1 cos(kxx) + C2 sin(kxx)

Y (y) = C3 cos(kyy) + C4 sin(kyy)

With k2 = k2x + k2y and hence Hz = {X(x)Y (y)}. Boundary conditions require that

Ex = 0 at y = 0 and y = b also Ey = 0 at x = 0 and x = a. For Ex to be zero, ∂Hz

∂y

must vanish at y = 0 and y = b. In the same lines,for Ey to be zero, ∂Hz

∂x
must vanish at

the planes x = 0 and x = a. Applying these boundary conditions we get the following

solution for Hz.

Hz = C cos(kxx) cos(kyy) e−γz (3.39)

Here, kx = mπ
a

and ky = nπ
b

. m,n = 0, 1, 2.. but not simultaneously zero. Once we get

Hz it is easy to obtain the other field components using equations (3.29) to (3.34)

Ex =
iωµ

k2
Cnπ

b
cos
(mπx

a

)
sin
(nπy

b

)
e−γz

Ey = −iωµ
k2

Cmπ

a
sin
(mπx

a

)
cos
(nπy

b

)
e−γz

Hx = − γ

k2
Cmπ

a
sin
(mπx

a

)
cos
(nπy

b

)
e−γz

Hy =
γ

k2
Cnπ

b
cos
(mπx

a

)
sin
(nπy

b

)
e−γz

Expression for cut off frequency becomes,

ωc =
1
√
µε

√(mπ
a

)2
+
(nπ
b

)2
(3.40)

This is the cut-off frequency of TEmn mode. If we consider TE10 mode, it has minimum

cut-off frequency. Hence it is known as dominant TE mode. The expressions for field

components imply that TE00 mode is not possible because all the components will iden-

tically vanish if m = n = 0.

It is possible to obtain the nature of electric and magnetic field components for TM mode

by considering Hz = 0 and Ez 6= 0. Applying necessary boundary conditions it can be
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shown that,

Ez = Eo
z sin

(mπx
a

)
sin
(nπy

b

)
(3.41)

where m = 1, 2, 3.. and n = 1, 2, ... Using this we can deduce the other field components.

Since m and n can not be zero, obviously one can not have TM00, TM10 and TM01

modes.TM modes have a higher cut off frequency than the lowest TE mode which is why

TE10 is called dominant mode.

The rectangular wave guides do not support TEM modes. This is because, TEM mode

both Hz and Ez are zero which would make all other field components identically equal

to zero. [4]

3.4 Impedance in a rectangular wave guide

The wave impedance is generally defined as the ratio of the transverse component of

the electric field to the transverse component of the magnetic field. For a transverse

electromagnetic wave travelling through an unbounded homogeneous medium, the wave

impedance is equal to the intrinsic impedance of the medium which is given by,

η =
Ex
Hy

=

√
µ

ε

In free space the impedance of plane electromagnetic waves is given by,

ηo =

√
µo
εo

= 376.731 Ω

For TE mode

The expressions for Ex and Hy in TE mode are given by,

Ex = −iωµ
k2

nπ

b
Ho cos

(mπx
a

)
sin
(nπy

b

)
e−γz

Hy = − γ

k2
nπ

b
Ho cos

(mπx
a

)
sin
(nπy

b

)
e−γz

Where

k2 =
(mπ
a

)2
+
(mπ
a

)2
For propagating solution γ should be purely imaginary,

γ = iβ = i
√
µεω2 − k2
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Therefore, the expression for impedance becomes,

ηTE =
Ex
Hy

=
ωµ

β
=

√
µ

ε

1√
1−

(
fc
f

)2
For a rectangular wave guide of dimensions 2.08 cm × 1.01 cm we have studied the vari-

ation of this impedance with frequency. The following is the MATLAB code for plotting

impedance versus frequency.

clc;

a =0.0101;

b =.0208;

m =1;

n =0; ( for TE10 mode)

c =3e8;

d =1./(a. ∧ 2);

e =1./(b. ∧ 2);

fc =c. ∗ pi. ∗ sqrt(d+ e); (cut off frequency for TE[1, 0])

f =[0.3e9 : 1e9 : 300e9];

cnst =376.731 (square root of ratio of permeability to permittvity in vacuum)

g =(fc./f). ∧ 2;

imp =cnst./sqrt(1− g); (Impedance of rectangular waveguide for TE mode)

plot(f, imp);
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Figure (3.c): variation of impedance Vs frequency for TE mode

For TM mode

The expressions for Ex and Hy in TM mode are given by,

Ex = − γ

k2
mπ

a
Eo cos

(mπx
a

)
sin
(nπy

b

)
e−γz

Hy = −iωε
k2

mπ

a
Eo cos

(mπx
a

)
sin
(nπy

b

)
e−γz

Where

k2 =
(mπ
a

)2
+
(mπ
a

)2
As before, for propagating solution γ should be purely imaginary,

γ = iβ = i
√
µεω2 − k2

Therefore, the expression for impedance becomes,

ηTM =
Ex
Hy

=
β

ωε
=

√
µ

ε

√
1−

(
fc
f

)2

For the same rectangular wave guide of dimensions 2.08 cm × 1.01 cm we have studied

the variation of this impedance with frequency. The following is the MATLAB code for

plotting impedance versus frequency graph.
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clc;

a =0.0101;

b =.0208;

m =1;

n =1; ( for TM11 mode)

c =3e8;

d =1./(a. ∧ 2);

e =1./(b. ∧ 2);

fc =c. ∗ pi. ∗ sqrt(d+ e); (cut off frequency for TM [1, 1])

f =[0.3e9 : 1e9 : 300e9];

cnst =376.731 (square root of ratio of permeability to permittvity in vacuum)

g =(fc./f). ∧ 2;

imp =cnst. ∗ sqrt(1− g); (Impedance of rectangular waveguide for TM mode)

plot(f, imp);

Figure (3.d): variation of impedance Vs frequency for TM mode
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Conclusions

As we see from first graph (figure 3.c),for TE mode, the impedance in rectangular wave

guide decreases as the frequency is increased through cut off frequency. But for TM

mode impedance increases with frequency above cut off frequency. This is shown in the

second graph (figure 3.d). Comparing the two graphs, it is evident that the value of the

impedance for TE mode is always higher than that for TM mode. For TE mode impedance

is grater than the wave impedance in vacuum while for TM mode the impedance in the

wave guide is less than that in vacuum. From the expressions for impedances, one can

infer that it is imaginary below cut off frequency for both TE and TM modes. The

graphs show only the variation of impedance above cut off frequency where it is no more

imaginary. The real positive value of the impedance shows that wave guide is resistive

and the waves carry energy.[4]
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Chapter 4

CAVITY RESONATORS

4.1 Introduction

We are familiar with LCR resonant circuits which works at low frequencies. It has an

inductance L, capacitance C and a resistance R which represents the losses in the circuit.

The resonant frequency f is given by

f =
1

2π
√
LC

If a similar resonant circuit is required at microwave frequencies, the values of L and

C needed would be very small to build practically. If we try to resonate these type of

circuits with high frequencies the losses represented by R will be very large. So if we need

a resonant circuit at microwave frequencies we need to pay attention to cavity resonators.

When a wave is propagating in a wave guide, the electric and magnetic fields exist and

travel in definite patterns. If we place a metal plate across the wave guide there is complete

reflection and the returning wave exhibits the same patterns. The waves travelling in

opposite directions produce a standing wave and the electromagnetic wave bounces back

and forth between the two plates. This is what happens in a cavity. [5]

4.2 Modes in cavities

Since there are an infinite number of modes in a wave guide, it follows that a cavity also

has an infinite number of modes. Similar to wave guides cavities also have two types of

modes, TE and TM. The modes are designated by three subscripts l,m and n. A low

frequency LCR circuit has a single resonating frequency while the resonating cavities

have many resonant frequencies.
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4.3 Rectangular cavity resonator

Mathematical analysis

Consider a rectangular cavity having dimensions a, b and d in x, y and z directions as

shown in the following diagram (3.e). Here also we consider the time dependence of the

fields to be eiωt and each components of electric and magnetic fields is a function of x,y

and z. Let Eα be any component of the electric field inside the cavity. Then it should

satisfy,

Figure (3.e) Rectangular cavity

∇2Eα = −ω2µεEα (4.1)

Applying method of separation of variables,

Eα = Xα(x)Yα(y)Zα(z)

Substituting this in the above differential equation we get,

1

Xα

∂2Xα

∂x2
+

1

Yα

∂2Yα
∂y2

+
1

Zα

∂2Zα
∂z2

= −ω2µε

Each one of the terms in left hand side should be equal to a constant.

1

Xα

∂2Xα

∂x2
= −k2x

1

Yα

∂2Yα
∂y2

= −k2y
1

Zα

∂2Zα
∂z2

= −k2z (4.2)
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kx, ky and kz are related by the following equation.

k2x + k2y + k2z = ω2µε (4.3)

Solving the equations (4.2) we get

Eα(x, y, z) = (Aα cos(kxx) +Bα sin(kxx)) (Cα cos(kyy) +Dα sin(kyy))

(Fα cos(kzz) +Gα sin(kzz))

In particular,

Ex(x, y, z) = (Ax cos(kxx) +Bx sin(kxx)) (Cx cos(kyy) +Dx sin(kyy))

(Fx cos(kzz) +Gx sin(kzz))

Ex should become zero at z = 0 and z = d, also at y = 0 and y = b. Applying these

boundary conditions we end up with,

Ex(x, y, z) = [(Ax cos(kxx) +Bx sin(kxx)] sin(kyy) sin(kzz) (4.4)

With kz = nπ
d

and ky = mπ
b

where m,n = ±1,±2...

Similarly we can work out for Ey and Ez,

Ey(x, y, z) = [(Cy cos(kyy) +Dy sin(kyy)] sin(kxx) sin(kzz) (4.5)

Ez(x, y, z) = [(Fz cos(kzz) +Gz sin(kzz)] sin(kxx) sin(kyy) (4.6)

Where kx = lπ
a

with l = ±1,±2...

Irrespective of the solution we got, fields must satisfy Maxwell’s equations inside the

cavity. In particular, the electric field must satisfy the condition ~∇· ~E = 0 at every points

inside the cavity. That is,
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

= 0

Thus,

[−Ax cos(kxx) +Bx sin(kxx)] sin(kyy) sin(kzz)

+ [Cy cos(kyy) +Dy sin(kyy)] sin(kxx) sin(kzz)

+ [(Fz cos(kzz) +Gz sin(kzz)] sin(kxx) sin(kyy) = 0

Therefore,
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At (0, y, z) , ~∇ · ~E = 0 implies Bx = 0

At (x, 0, z) , ~∇ · ~E = 0 implies Dy = 0

At (x, y, 0) , ~∇ · ~E = 0 implies Fz = 0

Hence the expression for electric field inside the rectangular cavity becomes,

~E = Eo
x cos(kxx) sin(kyy) sin(kzz)x̂+ Eo

y cos(kyy) sin(kxx) sin(kzz)ŷ

+Eo
z cos(kzz) sin(kxx) sin(kyy)

Where kx = lπ
a

, ky = mπ
b

, kz = nπ
d

. l, m and n are integers which can not be zero

simultaneously.

If we take Ez = 0 then it is called a TElmn mode. So for a TElmn mode the electric field

components are,

Ex = Eo
x cos(kxx) sin(kyy) sin(kzz) (4.7)

Ey = Eo
y cos(kyy) sin(kxx) sin(kzz) (4.8)

The magnetic field components are obtained by using Faraday’s law.

HX =
1

iµω
Eo
y sin(kxx) cos(kyy) cos(kzz) (4.9)

Hy = − 1

iωµ
Eo
xkz cos(kxx) sin(kyy) cos(kzz) (4.10)

Hz = − 1

iωµ

[
Eo
ykx − Eo

xky
]

cos(kxx) cos(kyy) sin(kzz) (4.11)

From equation (4.3) we have,

k2x + k2y + k2z = ω2µε

l2π2

a2
+
m2π2

b2
+
n2π2

d2
= ω2µε

Thus frequencies that are permitted are very specified frequencies which are decided by

the value of m,n and l. In the case of rectangular wave guide we had seen that there was

a minimum frequency above which propagation takes place. But in this case there is a

specified frequency at which the propagation takes place for a given mode.The modes are

called resonant modes and hence the name resonant cavity. [4, 5]

4.4 Optical cavities

An optical cavity or optical resonator is an arrangement of mirrors that forms a standing

wave cavity resonator for light waves. Light confined in the cavity reflect multiple times
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producing standing waves for certain resonance frequencies. only certain patterns and

frequencies of radiation will be sustained by the resonator, with the others being sup-

pressed by destructive interference. In general, radiation patterns which are reproduced

on every round-trip of the light through the resonator are the most stable, and these

are the eigen modes of the resonator. Resonator modes can be divided into two types:

longitudinal modes, which differ in frequency from each other; and transverse modes,

which may differ in both frequency and the intensity pattern of the light.[6]

4.4.1 Optical Microcavities

An optical microcavity is a structure formed by reflecting faces on the two sides of a

spacer layer or optical medium. The name microcavity stems from the fact that it is

often only a few micrometers thick, the spacer layer sometimes even in the nanometer

range. As with common lasers this forms an optical cavity or optical resonator, allowing

a standing wave to form inside the spacer layer.Like its acoustic analogue the tuning fork,

the optical microcavity (or microresonator) has a size-dependent resonant frequency spec-

trum. Microscale volume ensures that resonant frequencies are more sparsely distributed

throughout this spectrum than they are in a corresponding macroscale resonator. An

ideal cavity would confine light indefinitely (without loss) and would have resonant fre-

quencies at precise values. Deviation from this ideal condition is described by the cavity

Q factor (which is proportional to the confinement time in units of the optical period).[7]

4.4.2 Spontaneous emission in optical resonators

In its standard description, spontaneous emission is the irreversible emission of a photon

into the free space modes of the electromagnetic field, accompanied by a transition of the

atom from an electronic state of energy E2 to one of lower energy E1. The frequency of

the emitted light is E2−E1

~ where ~ is the Planck’s constant.

The presence of Planck’s constant in this frequency clearly indicates that the spon-

taneous emission is an intrinsically quantum mechanical process. Indeed, its proper

description the quantisation of both the atoms and the field. A well known result of this

theory is that rate of spontaneous emission is proportional to the free space mode density

of the electromagnetic field.

But this description of spontaneous emission is not general and that spontaneous

emission is not an intrinsic atomic property : rather, it can be modified by tailoring the

electromagnetic environment that the atom can radiate into, This was first realized by

Purcell, who noted that the spontaneous emission rate can be enhanced for an atom placed

inside a cavity with one of its modes resonant with the transition under consideration,
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and by Kleppnar, who discussed the opposite case of inhibited spontaneous emission. It

has also been recognised that spontaneous emission need not be an irreversible process.

An atom coupled to a single mode electromagnetic field undergoes a periodic exchange

of excitation between the atom and the filed.[8]

Future work

We shall investigate spontaneous emission in micro cavities and vacuum Rabi oscillations

in a single two level atom coupled to a micro cavity.
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