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Abstract

Quantum walks (QWs) are becoming widespread in physics. They were

first introduced as quantum versions of random classical processes and quan-

tum cellular automata , and have since been extensively studied, particularly in

the context of quantum information science. Here we will start with some ba-

sics of Quantum Computation and see how to construct, run some of the basic

Quantum Algorithms and submit them to run on IBM’s Quantum computing

simulator. IBM provides a software called Quantum Information software kit

(QISKIT) that provides interface between quantum computer and users with

the help of which one compute any program source code on real quantum com-

puter. And then we will see what a Quantum random walk is and discover

some fascinating features of QRW and how it differs from Classical Random

Walk. And study different models of Quantum Random Walks and their im-

plementation on 1D, 2D lattices and graphs.
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1 Introduction

Random walk is a process by which a particles moves in random direction in math-

ematical space with certain probabilities assigned by us. A random walk is one of

the most extensively used random processes in science and engineering for simulation

and approximation.

It was first proposed by Y. Aharonov et al. in 1993[2]. They demonstrated that,

due to the nature of quantum characteristics, the average length of a walking path

on a line can be greater than that of a classical random walk.Here we will discover

the new features of Quantum Random Walk and plot the probability distribution

graphs to verify the results. As a result, the quantum random walk can be utilised to

build a variety of additional quantum algorithms. A quantum computer uses discrete

registers, which means its state space is a vast but finite Hilbert space. We’ll be able

to map the quantum walk to a computation by such a machine by discretizing it. So

a Quantum computer can efficiently simulate the quantum random walk and use it to

carry out specific computational tasks. Here we’ll want to use some of the ’strange’

consequences of the walk afforded by quantum mechanics to boost our computing ca-

pacity. Furthermore, it can solve graph issues, which can be used to formulate many

real-world problems. For this many types of Quantum Random walk models are being

proposed like Staggered Quantum Walk(SQW), Szegedy’s model for quantum walk

which perform Quantum walk irrespective of the coin state. Quantum algorithms, on

the other hand, are only effective in reality if they can be implemented efficiently on

a quantum computer.

Aside from the fascinating new physics which we’ll discover in the study of quantum

random walks, we’ll want to use some of the ’strange’ consequences of the walk af-

forded by quantum mechanics to boost our computing capacity. The concept is that

a quantum computer can efficiently implement (simulate) the quantum random walk

and use it to carry out specific computational tasks.In this way, we hope to use quan-

tum random walk features to find more efficient algorithms on a quantum computer.

This report is organized in nine sections. section 1 discusses a general Introduc-

tion of the report. section 2 describes the basics of Quantum computation and in the

same section we introduce the mathematical preliminaries for working with QISKIT

such as subsection 2.1 Qubits which are the building blocks of Quantum computer,
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subsection 2.2 how to define multi particle quantum state, subsection 2.3 Quantum

gates which are used to make quantum circuits in quantum computer and then we

defined entanglement subsection 2.4 and the formation of bell sates. Using all these

building blocks, at last we introduced quantum teleportation circuitsubsection 2.5.

In further sections we discussed some of the Quantum algorithms.In section 3 we

discussed Deutsch Josza Algorithm. In section 4 we discussed Grover’s algorithm.

In section 5 we discussed Quantum fourier Transform. In section 6 we Quantum

Phase Estimation. In section 7 we introduced the most basic Classical random walk

in 1D. And then in section 8 we discussed Quantum Random Walks and subsec-

tion 8.1 discovered some strange features of Quantum random walks and how they

differ from classical random walk. Then we studied about different types of Quantum

random walks. In subsection 8.2 we studied coined quantum random walk in 1D

and it’s implementation on IBM computers in subsubsection 8.2.1.In subsection 8.3

we introduced Staggered quantum random walk and its basic definitions. In further

subsubsection 8.3.1 we studied SQW in 1D and it’s implementation on IBM comput-

ers in subsubsection 8.3.2. In subsubsection 8.3.3 we studied SQW in 1D and it’s

implementation on IBM computers in subsubsection 8.3.5. In subsection 8.4 we in-

troduced Szegedy’s Quantum Walk. In section 9 we discussed about the future scope

of Quantum random walks. And at last we concluded this report in section 10.

Appendix A includes code for Quantum teleportation circuit in QISKIT. Appendix B

includes python code for Deutsch Josza Algorithm in QISKIT. Appendix C includes

python code for Grover’s algorithm in QISKIT. Appendix D includes python code

for Classical Random Walk in 1-D in QISKIT. Appendix E includes python code for

Coined Quantum Random Walk in 1-D in QISKIT. Appendix F includes python code

for Staggered Quantum Walk on 1D lattice in QISKIT. Appendix G includes python

code for Staggered Quantum Walk on 2-D square lattice in QISKIT.
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2 Basics of Quantum Computation

2.1 Qubits

A classical computer operates on strings of bits. A quantum computer, on the other

hand, works with qubits. We treat qubits as abstract mathematical objects. As a

classical bit has a state – either 0 or 1 – a qubit also has two posible state |0⟩ or | ↑⟩
and |1⟩ or | ↓⟩

Figure 1: Quantum Two level system: Qubit

So a qubit is a two level system spanned by two states |0⟩, |1⟩ or | ↑⟩, | ↓⟩. Or we can

say that the states is spanned by n-bit strings |x1x2x3...xni⟩ with xiϵ 0, 1. It is also

possible to form linear combinations of states, often called superpositions:

|ψ⟩ = α|0⟩+ β|1⟩

where α and β are complex numbers. Hence we can say that, the state of a qubit

is a vector in a two-dimensional complex vector space and the states |0⟩ and |1⟩ are
known as computational basis states, and form an orthonormal basis for this vector

space. A quantum computer state can be in any superposition of these basis states.

3



2.2 Multiple particle Quantum States

We use tensor product to describe Multi-particle states:

|a⟩ ⊗ |b⟩ =

(
a1

a2

)
⊗

(
b1

b2

)
=


a1b1

a2b2

a2b1

a2b2


Example: system A is in state |1⟩A and system B is in state |0⟩B

So the total biparticle state is —10⟩AB = |1⟩A ⊗ |0⟩B =

(
a1

a2

)
⊗

(
b1

b2

)
=


a1b1

a2b2

a2b1

a2b2


Remark :

States of this form are called uncorrelated, but there are also bi-particle states that

cannot be written as |ψ⟩A ⊗ |ψ⟩B These states are correlated and sometimes even

Entangled, Example:

|ψ⟩AB =
1√
2
(|00⟩AB + |11⟩AB)

̸= |ψA⟩ ⊗ |ψ⟩B

=
1√
2


1

0

0

1


2.3 Quantum Gates

A quantum computer is formed from a quantum circuit comprising wires and elemen-

tary quantum gates to carry around and manipulate quantum information, similar

to how a conventional computer is built from an electrical circuit containing wires

and logic gates. As Quantum theory is unitary, quantum gates are represented by

Unitary matrices.[5]
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Figure 2: Quantum Logic Gates

Real dirac notation,

U =

(
U00 U01

U10 U11

)
U = U00|0⟩⟨0|+ U01|0⟩⟨1|+ U10|1⟩⟨0|+ U11|1⟩⟨1|
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2.3.1 Single Qubit gates

1. Pauli-X Gate

Also known as Classical NOT Gate

σx =

(
0 1

1 0

)
= |0⟩⟨1|+ |1⟩⟨0|

σx|0⟩ =

(
0 1

1 0

)(
1

0

)
=

(
0

1

)
= |1⟩

σx|0⟩ = |1⟩

σx|1⟩ = |0⟩

(1)

Pauli-X gate flips the bit and thus is called bit flip gate. It represents rotation

around x-axis by angle π

since |+⟩ and |−⟩ states lie on x-axis hence there will be no effect of bit flip on

them.

2. Pauli-Z gate

σx =

(
1 0

0 −1

)
= |0⟩⟨0| − |1⟩⟨1|

σx|+⟩ =

(
1 0

0 −1

)
1√
2

(
1

1

)
=

1√
2

(
1

−1

)
= |1⟩

σz|+⟩ = |−⟩

σz|−⟩ = |+⟩

(2)

Pauli-Z gate flips the state |+⟩to—-⟩andvice−versaandthusiscalledphaseflipgate.Itrepresentsrotationaroundz−
axisbyangleπ

3. Pauli-Y gate

σy =

(
0 −i
i 0

)
= iσxσz (3)

Pauli-Y gate is the combination of bit flip and phase flip. It represents rotation
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around y-axis by angle π

σ2
i = I =

(
0 1

1 0

)
(4)

σx,σy,σz are Pauli Matrices

Together with identity they form basis of 2× 2 matrices

4. Hadamard Gate

H =
1√
2

(
1 1

1 −1

)
= |0⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨0| − |1⟩⟨1|

H|0⟩ = |+⟩

H|1⟩ = |−⟩

(5)

This gate is used to creates superposition states.It is also used to change be-

tween x and z basis

5. S Gate

S =
1√
2

(
1 0

0 i

)
= |0⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨0| − |1⟩⟨1|

S|+⟩ = |+ i⟩

S|−⟩ = | − i⟩

(6)

S gate adds 90 to the phase ϕ. S.H is applied to change from z to y basis.

2.3.2 Multi qubit gates

1. CNOT Gate(CX)

Acts on a pair of qubits, with one acting as ’control’ and the other as ’target’.

Performs a NOT on the target whenever the control is |1⟩. If the control qubits
is in superposition state, this gate creates entanglement.

7



2. Toffoli Gate(CCX)

→ Double Controlled-Not

It has two control qubits and one target.

Applies NOT to target only when both controks are in state |1⟩
Toffoli gate with Hadamard Gate is a universal gate set for quantum.

3. SWAP Gate

Swaps the state of two qubits.

4. Identity Gate

Is actually the absence of gate. It ensures nothing is applied to a qubit for one

unit of gate time.

Refer Figure 2 for more Quantum gates and their corresponding matrix notation.

8



2.4 Entanglement

If a pure state |ψ⟩AB on systems A,B, connot be written as |ψ⟩A ⊗ |ϕB⟩ then it is

entangled.

2.4.1 Bell States

There are four Bell states that are maximally entangled and build an orthogonal

basis.

|ψ00⟩ = 1√
2
(|00⟩+ |11⟩)

|ψ01⟩ = 1√
2
(|01⟩+ |10⟩)

|ψ10⟩ = 1√
2
(|00⟩ − |11⟩)

|ψ11⟩ = 1√
2
(|01⟩ − |10⟩)

(7)

In general, we can write

|ψij⟩ =
(
I ⊗ σjxσ

i
z

)
|ψ00⟩

Creation of Bell States

Figure 3: Creation of bell states

Initial state HA CNOTAB

|ψ00⟩
(

1√
2
|00⟩+ |10⟩

) (
1√
2
|00⟩+ |11⟩

)
|ψ00⟩

(
1√
2
|01⟩+ |11⟩

) (
1√
2
|01⟩+ |10⟩

)
|ψ00⟩

(
1√
2
|00⟩ − |10⟩

) (
1√
2
|00⟩ − |11⟩

)
|ψ00⟩

(
1√
2
|01⟩ − |11⟩

) (
1√
2
|01⟩ − |10⟩

)

9



BELL STATES

import numpy as np

from qiskit import *

from qiskit.quantum_info import Statevector

from qiskit.visualization import plot_state_qsphere

qreg = QuantumRegister(2, 'q')

qc=QuantumCircuit(qreg)

qc.reset(qreg[0])

qc.reset(qreg[1])

qc.h(0)

qc.cx(0,1)

qc.x(0)

qc.z(0)

sv=Statevector.from_instruction(qc).data

print(sv)

plot_state_qsphere(sv)

Figure 4: Formation of Bell states on Q-sphere
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2.5 Teleportation

GOAL:

Alice and Bob met long ago and they generated an EPR pair, each taking one qubit

of the EPR pair when they separated. Alice wants to send her unknown state to Bob.

She can only send him classical information.”

Solution: They both share the maximally entangled state.

|ψ00⟩AB =
1√
2
[|00⟩AB + |11⟩AB]

Initial state of the total system

|ϕ⟩s ⊗ |ψ00⟩AB =
1√
2
(α|011⟩SAB + β|100⟩SAB + β|111⟩SAB)

=
1

2
√
2
[(|00⟩SA + |11⟩SA)⊗ (α|0⟩B + β|1⟩B)

+(|01⟩SA + |110⟩SA)⊗ (α|1⟩B + β|0⟩B)

+(|00⟩SA − |11⟩SA)⊗ (α|0⟩B − β|1⟩B)

+(|01⟩SA − |10⟩SA)⊗ (α|1⟩B − β|0⟩B)]

=
1√
2
[(|ψ00⟩SA ⊗ |ϕ⟩B

+(|ψ01⟩SA ⊗ σx|ϕ⟩B
+(|ψ10⟩SA ⊗ σz|ϕ⟩B
+(|ψ11⟩SA ⊗ σxσz|ϕ⟩B]

PROTOCOL

Figure 5: Teleportation protocol
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1. Alice measures on S and A in bell basis.

Alice measures state → corresponding Bob’s state

|ψ00⟩ |ϕ⟩B
|ψ01⟩ σx|ϕ⟩B
|ψ10⟩ σz|ϕ⟩B
|ψ11⟩ σxσz|ϕ⟩B

2. She sends her classical output i, j to Bob.

3. Bob applies σizσ
j
x to his qubit and gets |phi⟩.

4. Bob applies =⇒ Bob’s final state.

i j Bob′sapplies Bob′sfinalstate

|ψ00⟩ |ϕ⟩B 0 0 I |ϕ⟩B
|ψ01⟩ σx|ϕ⟩B 0 1 σx |ϕ⟩B
|ψ10⟩ σz|ϕ⟩B 1 0 σz |ϕ⟩B
|ψ11⟩ σxσz|ϕ⟩B 1 1 σzσx |ϕ⟩B

NOTE:

That Alice’s state collapses during the measurement, so she does not have the initial

state |ϕ⟩ anymore.

This is expected due to no-cloning theorem, as she cannot copy her state, but just

send her state to Bob when destroying her own.

States gets teleported .

Refer Appendix A to see how to Implement Teleportation circuit in QISKIT.
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3 Deutsch Josza Algorithm

GOAL:

To determine some property of the oracle (constant or balanced) using the minimal

number of queries.

On a classical computer, such an oracle is given by a function: f : (0, 1)n → (0, 1)n

On a Quantum computer, the oracle must be reversible.

Figure 6: Reversible oracle

1. Let x and y are in state |0⟩.

|x⟩ = |0⟩, |y⟩ = |0⟩

i.e.|ψin⟩ = |x⟩|y⟩ = |0⟩|0⟩

|ψout = |x⟩|y + f(x)⟩ = |0⟩|0⊕ f(0)⟩ = |0⟩f(0)

2. Let state of y is changed from |0⟩ to |1⟩.

|x⟩ = |0⟩, |y⟩ = |1⟩

i.e.|ψin⟩ = |x⟩|y⟩ = |0⟩|1⟩

|ψout = |x⟩|y + f(x)⟩ = |0⟩|1⊕ f(0)⟩ =

|0⟩|1⟩, whenf(0) = 0

|0⟩|0⟩, whenf(0) = 1

3. Now let y is in superposition state.

|ψin⟩ = |x⟩|y⟩ = |0⟩
(
|0⟩ − |1⟩√

2

)

|ψout⟩ = |0⟩
(
|0⊕ f(0)⟩ − |1⊕ f(0)⟩√

2

)
=

 |0⟩ |0⟩−|1⟩√
2
, whenf(0) = 0

−|0⟩ |0⟩−|1⟩√
2
, whenf(0) = 2

13



|ψout⟩ = (−1)f(0)|0⟩
(
|0⟩ − |1⟩√

2

)
(8)

Equation 8 known as Deutsch Algorithm

Uf also called Bit flip oracle, can be seen as unitary which performs the map,

Uf |x⟩|y⟩ = |x⟩|y ⊕ f(x)⟩

forf : (0, 1)n → (0, 1),we can construct Uf .

Figure 7: Deutsch Josza oracle

|0⟩
(
|0⟩ − |1⟩√

2

)
→ (−1)f(0)|0⟩

(
|0⟩ − |1⟩√

2

)
|0⟩
(
|0⟩ − |1⟩√

2

)
→ (−1)f(0)|1⟩

(
|0⟩ − |1⟩√

2

)

Uf |x⟩ = (−1)f(x)|x⟩ Independent of |y⟩ (9)

4. When both Qubits are in superposition state:

|ψin⟩ =
(
|0⟩+ |1⟩√

2

)(
|0⟩ − |1⟩√

2

)
=

1√
2

(
|0⟩
(
|0⟩ − |1⟩√

2

)
+ |1⟩

(
|0⟩ − |1⟩√

2

))

14



|ψout⟩ =
1√
2

(
(−1)f(0)|0⟩

(
|0⟩ − |1⟩√

2

)
+ (−1)f(1)|1⟩

(
|0⟩ − |1⟩√

2

))
=

1√
2

(
(−1)f(0) + (−1)f(1)|1⟩

)( |0⟩ − |1⟩√
2

)

(
|0⟩ − |1⟩√

2

)(
|0⟩ − |1⟩√

2

)
=


(

|0⟩+|1⟩√
2

)(
|0⟩−|1⟩√

2

)
; whenf(0) = f(1)(

|0⟩−|1⟩√
2

)(
|0⟩−|1⟩√

2

)
; whenf(0) ̸= f(1)

Figure 8: Deutsch Josza circuit for 2 qubits

From Figure 8 you can tell if f(0)=f(1) by checking the first bit at one go.

Classical algorithm would require two checks.

15



N Qubit GENERALIZATION: DEUTSCH JOZSA ALGORITHM

Figure 9: Deutsch Josza oracle

Alice can send bob a bunch of numbers from 0 to n and a bit to write the answer.

Bob promises to use any one of the black boxes for all the numbers: Doesn’t tell

which one. Bob sends the bit back to Alice.

Alice needs to determine which one did he use? ( With minimum no. of trials)

Figure 10: Deutsch Josza circuit

After measurement if |x⟩ are 0 =⇒ oracle is Constant;

If |x⟩ are 1 =⇒ oracle is Balanced

Quantum Algorithm evaluates in one go

Refer Appendix B to see how to implement Deutsch Josza Algorithm in QISKIT.
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4 Grover’s algorithm

Grover’s algorithm is used for searching marked states from an unsorted database.

PROBLEM :Given a search space of size N, we want to find an element let say ’w’

of that search space, given an oracle Uf with f : (0, 1)n → (0, 1).

f(x) =

1, if x = w;

0, else

fo(x) =

0, ifx = 000...0

1, else

Uf(x) = (−1)f(x)|x⟩ (10)

Uf |x⟩ →

−|x⟩; forx = w

|x⟩; ∀x ̸= w

Uf = I − 2|w⟩⟨w| (11)

Ufo|o⟩∗n →

−|0⟩∗n, forx = w

|x⟩, ∀x ̸= w

QUANTUM CIRCUIT:

Figure 11: Grovers Algorithm Circuit

CLAIM: y=w with high probability

17



PROOF: let us define the uniform superposition state |s⟩

|s⟩ = H∗n|0⟩ (12)

and Diffuser V such that

V = H∗nUfoH
∗n

= H∗n2⟨0|0⟩∗nH∗n −H∗nIH∗n

= 2⟨s|s⟩ − I

(13)

V creates reflection at |s⟩

Let
∑

be the plane spaced by |s⟩ and |w⟩ Let |w‘⟩ be the state orthogonal to |w⟩ in∑
: |w⟩ = 1√

2n−1

∑
x ̸=w |x⟩

=⇒ |s⟩ =
√

2n − 1

2n
|w‘⟩+ 1√

2n
|w⟩ = cos

θ

2
|w′⟩+ sin

θ

2
|w⟩

where, θ = 2 sin−1
(

1√
2n

)
PROTOCOL

1. Prepare superposition state, |s⟩
2. Apply =I − 2|w⟩⟨w| → Reflection at |w⟩
3. Apply V = 2|s⟩⟨s| − I → Reflection at |s >
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Figure 12: Grovers Algorithm Protocol

V ∗ Uf corresponds to a rotation by an angle θ.

After r application of step 2 and 3, the state is rotated by an angle r · θ.
Hence after r calls to the oracle, the final measure will result in state |w⟩ with mini-

mum probability, p(w) ≥ 1− sin2 θ
2
= 1− 1

2n

Amplitude amplification

The general idea behind Grover’s algorithm is amplitude amplification. Let us have

a look at the amplitudes at each step in Grover’s algorithm

1. Preparing superposition state |s⟩
|s⟩ = H∗n|0⟩∗n
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Figure 13: superposition states prepared

2. Applying Oracle to state |s⟩
|s⟩ = (I − 2|w⟩⟨w|)|s⟩
This reflects the state |w⟩ which is the required state.

Figure 14: Reflection of |w⟩

3. Applying Diffuser to the above state |s⟩
V |s⟩ = (2|s⟩⟨s| − I)
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This reflects amplitude about the average amplitude

Figure 15: amplification about average amplitude

4. Repeating step 2 and 3 ,the amplitude of |w⟩ will increase further

Hence in this way Amplitude amplification is achieved.

When we have more than one marked state.

Let say, we have M marked elements , we define the winning state as,

|w⟩ = 1√
M

M∑
i=1

|wi⟩

and state orthogonal to |w⟩ as,

|w′⟩ = 1√
N −M

∑
x ̸=w1,w2....wm

|x⟩

=⇒ |s⟩ =
√
N −M√
N

|w′⟩+
√
M√
N

|w⟩

= cos
θ

2
|w′⟩+ sin

θ

2
|w⟩

sin
θ

2
=

√
M√
N

=⇒ Angle θ becomes larger
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r =
π

4 sin−1

(√
N√
M

)
We can see this speed up also when looking at the amplitudes.

Refer Appendix C to see how to Implement Grover’s Algorithm in QISKIT.
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5 Quantum Fourier Transform

Quantum Fourier Transform is effectively a change of basis from the computational

basis to the Fourier basis.

eg: 1 qubit computational basis states are |0⟩, |1⟩
Fourier basis for one qubit |+⟩, |−⟩
One qubit QFT that does this is Hadamard gate.

Figure 16: One qubit QFT

Building the quantum circuit that applies QFT

For n qubits we have 2n basis states (let N = 2n)

|x̃⟩ = QFT |x⟩ = 1√
N

N−1∑
y=0

exp

(
2πixy

2

)
|y⟩ (14)

For n=1 qubit case [N=2]

QFT |x⟩ = 1√
N

2−1∑
y=0

exp

(
2πixy

2

)
|y⟩

QFT |x⟩ = 1√
2

(
exp

(
2πix0

2

)
|0⟩+ exp

(
2πix1

2

)
|1⟩
)
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QFT |x⟩ = |x̃⟩ = 1√
2
(|0⟩+ exp (iπx)|1⟩)

For generalized case,

|x̃⟩ = 1√
N

N−1∑
y=0

e
2πixy
N |y⟩ (15)

where, y = [y1y2y3....yn] = 2n−1y1 + 2n−2y2 + ....2nyn =
n∑
k=1

yk2
n−k

|x̃⟩ = 1√
N

N−1∑
y=0

exp

(
2πi

n∑
k=1

yk
2k

)
|y1y2...yn⟩

=
1√
N

N−1∑
y=0

n∏
k=1

exp

(
2πixyk
2k

)
|y1y2....yn⟩

|x̃⟩ = 1√
N
(|0⟩+e

2πix
21 |1⟩)⊗(|0⟩+e

2πix
22 |1⟩)⊗(|0⟩+e

2πix
23 |1⟩)........⊗(|0⟩+e

2πix
2n |1⟩) (16)

e.g. n=3 qubits,N = 23 = 8

|x⟩ = 5 = |101⟩

|x̃⟩ = |5̃⟩ = 1√
8
(|0⟩+ e

2πi5
21 )⊗ (|0⟩+ e

2πi5
22 )⊗ (|0⟩+ e

2πi5
23 )

Now we need to find a Quantum circuit that implements QFT.

|x̃⟩ = 1√
N
(|0⟩+ e

2πix
21 |1⟩)⊗ (|0⟩+ e

2πix
22 |1⟩)⊗ (|0⟩+ e

2πix
23 |1⟩)........⊗ (|0⟩+ e

2πix
2n |1⟩)

Observations

Each qubit went from |xk⟩ → |0⟩+ exp(2x
2k
)|1⟩

|x̃⟩ contains terms like |000...0⟩ exp(0)

|000...01⟩ → exp(2πix
2n

)

|000...10⟩ → exp
(
2πix
2n−1

)
This shows that Phase is qubit dependent

|111...11⟩ → exp(2[ x
21

+ x
22

+ .... x
2n
]
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Need to add up more components with more 1’ s

Ingredients to build a circuit

1. Hadamard gate

H|xk⟩ =


(|0⟩+|1⟩)√

2
for xk = 0

(|0⟩−|1⟩)√
2

for xk = 1

=
(|0⟩+ exp(2xk

2
)|1⟩)

√
2

2. Unitary rotation

UROTk|xj⟩ = exp

(
2πi

2k
xj

)
|xj⟩

=

[
1 0

0 exp(2πi
2k
)

]

UROTk|xj⟩ applies phase exp
(
2πi
2k

)
for state |1⟩

Figure 17: Quantum Fourier Transform
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• Step 0: Initial state

|x1 x2 x3 ......xn⟩

• Step 1: After applying Hadamard to first qubit.

[|0⟩+ exp
2πi

2
x1|1⟩]⊗ |x2 x3 x4.......xn⟩

• Step 2: Controlled U rotation on first qubit with second qubit as target, we get[
|0⟩+ exp

(
2πi
(x2
22

+
x1
2

))
|1⟩
]
⊗ |x2 x3 x4.......xn⟩

• Step 3: Controlled U rotation on first qubit with third qubit as control, we get[
|0⟩+ exp

(
2πi
(x3
23

+
x2
22

+
x1
2

))
|1⟩
]
⊗ |x2 x3 x4.......xn⟩

• Step 5: Similarly, controlled U rotation on first qubit after all qubits as control

respectively we obtain,[
|0⟩+ exp

(
2πi
(xn
2n

+
xn−1

2n−1
....+

x1
2

))
|1⟩
]
⊗ |x2 x3 x4.......xn⟩

Hence after repeating the same process on all qubits and applying controlled U ro-

tation with controls as all greater qubit one by one we will obtain quantum Fourier

transform.

|x̃⟩ = 1√
N
(|0⟩+ e

2πix
21 |1⟩)⊗ (|0⟩+ e

2πix
22 |1⟩)⊗ (|0⟩+ e

2πix
23 |1⟩)........⊗ (|0⟩+ e

2πix
2n |1⟩)

This circuit in Figure 17 implements QFT (except in reverse order of qubits at output)
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6 Quantum Phase Estimation

PROBLEM: Remember that a unitary matrix has eigenvalues of the form eiθ and

that it has eigenvectors that form an orthogonal basis.

U |ψ⟩ = eiθψ |ψ⟩

Can we extract θψ given the ability to prepare |ψ⟩ and the ability to apply U?

SOLUTION: Yes, we use QPE. Phase estimation allows us to convert phase esti-

mation into amplitudes that we can measure.

More the number of qubits, more will be the precision.

Figure 18: QPE trick using more qubits

• STEP 0: Preparing initial state.

|0⟩⊗n|ψ⟩

• STEP 1: After applying Hadamard to all qubits.

(
1√
2
)n(|0⟩+ |1⟩)⊗n|ψ⟩

Using,

u2
x

= u2
x−1

u|ψ⟩ = u2
x−1

exp(iθψ)|ψ⟩ = u2
x−2

exp(2iθψ)|ψ⟩ = exp(2xiθψ)|ψ⟩
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we get,

• FINAL STEP : After successive controlled U operations.

(
1√
2
)n[(|0⟩+exp(iθψ2

n−1)|1⟩)⊗(|0⟩+exp(iθψ2
n−2)|1⟩).......⊗(|0⟩+exp(iθψ2

0)|1⟩)]

(17)

Comparing Equation 17 with equation of QFT Equation 16

|x̃⟩ = 1√
N
[(|0⟩+ exp(

2x

21
)|1⟩)⊗ (|0⟩+ exp(

2x

22
)|1⟩).......⊗ (|0⟩+ exp(

2x

2n
)|1⟩)] (18)

We can notice that QPE is same as QFT except θψ → (
θψ
2
)2π

If we apply QFT−1 at the end we can get our desired output.

QPE Protocol:

Given u|ψ⟩ = e2θ

QPE gives us 2nθψ, where n= number of qubits used to estimate θψ

Figure 19: Quantum Phase Estimation
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7 Classical Random Walk in 1-D

Consider a person walking on a 1 dimensional path with integral steps.

Let p be the probability that he takes a step to the right, i.e in the positive direction,

and let q = (1 − p) be the probability that he takes a step to the left, i.e in the

negative direction.

Let nl be the number of steps taken to the left and let nr be the number of steps taken

to the right. Then the position after N steps is given by the displacement, denoted

by m, given by

m = nr − nl (19)

We also have

N = nr + nl (20)

The total number of configurations we have after N steps is 2N .

The configuration of the state of the system is given by N and m, which we can use

to calculate nl and nr. The probability of the man being at position m after N steps

is the probability of obtaining the state (m,N), and it is given by

P (nr, N) =

(
N

nr

)
pnrqN−nr (21)

where nr =
N +m

2

The expectation value of nl and nr is given by

⟨nr⟩ = pN (22)

⟨nl⟩ = qN (23)

29



The expectation value of m is given by,

⟨m⟩ = ⟨nr − nl⟩ (24)

= ⟨nr⟩ − ⟨nl⟩ (25)

= N(p− q) (26)

The uncertainty in nr is ∆nr, which is given by,

∆nr =
√

⟨n2
r⟩ − ⟨nr⟩2 (27)

Now we need to compute ⟨n2
r⟩. It is given by,

⟨n2
r⟩ =

N∑
nr=0

P (nr, N)n2
r (28)

=
N∑

nr=0

(
N

nr

)
pnrqN−nrn2

r (29)

Now, we write

n2
rp
nr =

(
p
∂

∂p

)2

(pnr) (30)

⟨n2
r⟩ =

N∑
nr=0

(
N

nr

)
pnrqN−nrn2

r (31)

=
N∑

nr=0

(
N

nr

)
qN−nr

(
p
∂

∂p

)2

(pnr) (32)

=

(
p
∂

∂p

)2 N∑
nr=0

(
N

nr

)
qN−nr(pnr) (33)

(34)

Recall the binomial expansion formula given by

(p+ q)N =
N∑
n=0

(
N

n

)
pnqN−n (35)
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Thus we have,

⟨n2
r⟩ =

(
p
∂

∂p

)2

(p+ q)N (36)

=

(
p
∂

∂p

)
[pN(p+ q)N−1] (37)

= p[N(p+ q)N−1 + pN(N − 1)(p+ q)N−2] (38)

Now, we put in (p+ q) = 1, to get,

⟨n2
r⟩ = p[N + pN(N − 1)] (39)

= pN [1 + pN − p] (40)

= pN [q + pN ] (41)

= (pN)2 +Npq (42)

Therefore, the uncertainty ∆nr is given by,

∆nr =
√

⟨n2
r⟩ − ⟨nr⟩2 (43)

=
√

(pN)2 +Npq − (pN)2 (44)

=
√
Npq (45)

(46)

Similarly, ∆nl =
√
Npq

.

Now, we calculate the uncertainty in the displacement, m. We have,

m = nr − nl (47)

= 2nr −N (48)

where the second step is obtained using nl =
N −m

2
.

We also have,

⟨m⟩ = 2⟨nr⟩ − ⟨N⟩ = 2⟨nr⟩ −N (49)

31



⟨m2⟩ = 4⟨n2
r⟩+N2 − 4N⟨nr⟩ (50)

Then, we get,

∆m =
√

⟨m2⟩ − ⟨m⟩2 (51)

=
√

4⟨n2
r⟩+N2 − 4N⟨nr⟩ − 4⟨nr⟩2 −N2 + 4N⟨nr⟩ (52)

= 2
√

⟨n2
r⟩ − ⟨nr⟩2 (53)

= 2∆nr = 2
√
Npq (54)

Now, in the special case, that p = q =
1

2
, we have,

P (nr, N) =

(
N

nr

)
1

2N
(55)

⟨m⟩ = 0 (56)

∆m =
√
N (57)

Therefore, the the uncertainty in the displacement m goes as
√
N in the special case,

p = q =
1

2
.

7.1 Implementation of CRW in 1D

Refer Appendix D to see how Classical random walk code is implemented in python.
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Figure 20: Classical random walk of a walker on a line with initial position at 0

Probability distribution plot in Figure 20 is obtained using inbuilt random function

in python.

Figure 21: Binomial plot

Figure 21 is a binomial plot which is almost similar to Classical random walk prob-

ability distribution plot. Hence we verified experimentally which is exactly what the

math predicts.
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8 Quantum Random walk

8.1 Introduction

We’ll start with an example to illustrate quantum random walks and give you a

sense of what’s to come. This example is based on the work of three physicists, Y.

Aharonov, L. Davidovich, and N. Zagury, who published their findings in 1993. For

the first time, their study coined the term ”quantum random walk.”[4]

Let us consider a particle on a line whose position is represented by a wave-packet

|ψx0⟩ localized around a position x0, i.e. the function ⟨x|ψx0⟩ corresponds to a wave-

packet centralized around x0. Let P be the momentum operator.

Translation operator,

Ul = exp

(
−iP l
ℏ

)
(58)

so that,

Ul|ψx0⟩ = |ψx0−l⟩ (59)

A spin −1
2
particle is usually described by a 2-vector, since 2 ∗ s + 1 = 1

2
|ψ⟩ =(

|ψ̃↑⟩, |ψ̃↓⟩
)T

, where the first part corresponds the component of the wave-function

of the particle in the spin- | ↑⟩ space and the second one is the component in the

| ↓⟩-space.
Normalization condition gives,

(
∥|ψ̃↑⟩∥2 + ∥|ψ̃↓⟩∥2

)
= 1

Total Wavefunction of the particle ( spin and spatial part)

|ψ⟩ = α↑| ↑⟩ ⊗ |ψ↑⟩+ α↓| ↓⟩ ⊗ |ψ↓⟩

(60)

The time development corresponding to a translation by l on the larger state space

of the spin- 1
2
particle can now be described by the unitary operator

U = exp (−2iSz ⊗ P̂ l)
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When initial state of the particle is in superposition

|ψin⟩ =
(
α↑| ↑⟩+ (α↓| ↓⟩

)
(61)

The translation operator’s application U will cause a position superposition.

U |ψin⟩ = α↑| ↑⟩ ⊗ |ψx0−l⟩+ α↓| ↓⟩ ⊗ |ψx0+l⟩ (62)

=⇒ U |ψin⟩ corresponds to Random walk of particle on the line

If at this point if we measure the spin of the particle in the Sz basis, the particle will

be either in the state | ↑⟩ ⊗ |ψx0l⟩, localized around x0 + l with probability p↑ = |α↑|2

or in the state | ↓⟩ ⊗ |ψx0l⟩ localized around x0l with probability p↓ = |α↓|2

This procedure corresponds to a (biased) random walk of a particle on the line

We will now measure the spin in some rotated basis, supplied by two orthogonal

vectors |s+⟩, |s⟩ , rather than in the eigenbasis of Sz.Alternatively, we can rotate the

spin by some angle θ first before measuring it in Sz eigenbasis .

Rotation of spin can be represented as

R(θ) =

(
cos θ − sin θ

sin θ cos θ

)
(63)

Let us set up some more of the language used in quantum information theory.

| ↑⟩ =

(
1

0

)
, | ↓⟩ =

(
1

0

)
(64)

Sz =
1

2

(
1 0

0 −1

)
=

1

2
(| ↑⟩⟨↑ | − | ↓⟩⟨↓ |)

(65)

Let Mz denotes the measurement in the Sz basis.

Now we have to slightly rewrite the operator U to see the effect of operationsMzR(θ)U

on the initial state |ψin⟩ .
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U = exp (−2iSz ⊗ Pl)

= exp (−i(| ↑⟩⟨↑ | − | ↓⟩⟨↓ |)⊗ Pl

= (| ↑⟩⟨↑ | ⊗ exp(iP l))(| ↓⟩⟨↓ | ⊗ exp(iP l)).

(66)

U |ψin⟩ = (α ↑ | ↑⟩ ⊗ exp−iP l + α ↓ | ↓⟩ ⊗ exp iP l)|ψx0
Applying Rotation

R(θ)U |ψin⟩ = [(α↑ cos θ exp−iP l − α↓ sin θ exp iP l)| ↑⟩

+ (α↑ sin θ exp−iP l + α↓ cos θ exp iP l)| ↓⟩]⊗ |ψx0⟩

(67)

If width of |ψin⟩ is s.t., ∆x >> l

exp (±iP l)|ψx0 ≈ (I ± iP l)|ψx0

R(θ)U |ψin⟩ = [(α↑ cos θ(I − iP l)− α↓ sin θ(I + iP l))| ↑⟩

+ (α↑ sin θ(I − iP l) + α↓ cos θ(I + iP l))| ↓⟩]⊗ |ψx0⟩
= [[(α↑ cos θ − α↓ sin θ)I − (α↑ cos θ + α↓ sin θ)iP l]| ↑⟩

+ [(α↑ sin θ + α↓ cos θ)I − (α↑ sin θ − α↓ cos θ)iP l]| ↓⟩]⊗ |ψx0⟩

=⇒ MzR(θ)U |ψin⟩ =

| ↑⟩ ⊗ (I − iP lδ↑)|ψx0
| ↓⟩ ⊗ (I − iP lδ↓)|ψx0

(68)

where, displacements

lδ↑ = l

(
α↑ cos θ − α↓ sin θ

α↑ cos θ − α↓ sin θ

)
lδ↓ = l

(
α↑ sin θ − α↓ cos θ

α↑ sin θ − α↓ cos θ

)
And Probabilities

P ↑ = ∥(α↑ cos θ − α↓ sin θ)∥2

P ↓ = ∥(α↑ sin θ − α↓ cos θ)∥2

Displacement of the particle in one of the two cases, can be made much larger than l.

. Let us take case of lδ↑ We may choose, tan(θ) = ∥α↑

α↓∥(1 + ϵ)

∴ lδ↑ = l

(
1+α↑

α↓
tan(θ)

1−α↑
α↓

tan(θ)

)
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=⇒ lδ↑ ≈ −2l
ϵ

If ∆x >> lδ↑ and lδ↓, again using approximation

(I − iP lδ↑,↓)|ψx0⟩ ≈ exp(−iP lδ↑,↓)|ψx0⟩

= |ψx0−lδ↑,↓⟩

=⇒ This concludes that even if translation operator displaces by l , in very rare

cases the particle will jump much further than l

Figure 22: a)The particle enters the conditional displacement box U after being
localised in point x0. It is displaced up or down by l based on its spin degree of
freedom. When it exits its spin is measured in the z basis . (MZ). With probability 1

2
it is found displaced by l resp. l.
b) The identical setup as before, only the spin is rotated once the particle exits the U-
box. The particle might now be displaced up by significantly more than l after the spin
measurement Mz. (with small probability). It’s shifted by less than l in the opposite
direction (with large probability).
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8.2 Coined Quantum Random walk

Let HP be the position Hilbert space and HP is augmented by a Coin space Hc

spanned by two basis states | ↑⟩, | ↓⟩, which, in the preceding section, played the role

of the spin-
1

2
space.

States of the total system are in the space H = HC ⊗HP as before.

The following unitary operation can be used to represent the system’s conditional

translation (the same function which exp (2iSz ⊗ Pl) was playing in previous section).

S = | ↑⟩⟨↓ | ⊗
∑
i

|i+ 1⟩⟨i|+ | ↓⟩⟨↓ | ⊗
∑
i

|i− 1⟩⟨i| (69)

where the index i runs over Z in the case of a line.

S| ↑⟩ ⊗ |i⟩ = | ↑⟩⟨↓ | ⊗
∑
i

|i+ 1⟩⟨i|+ | ↓⟩⟨↓ | ⊗
∑
i

|i− 1⟩⟨i|| ↑⟩ ⊗ |i⟩

= | ↑⟩ ⊗ |i+ 1⟩

S| ↓⟩ ⊗ |i⟩ = | ↑⟩⟨↓ | ⊗
∑
i

|i+ 1⟩⟨i|+ | ↓⟩⟨↓ | ⊗
∑
i

|i− 1⟩⟨i|| ↓⟩ ⊗ |i⟩

= | ↓⟩ ⊗ |i1⟩

=⇒ transforms the basis state | ↑⟩ ⊗ |i⟩ to | ↑⟩ ⊗ |i+ 1⟩ and | ↓⟩ ⊗ |i⟩ to | ↓⟩ ⊗ |i1⟩.

The random walk’s first step is a rotation in coin-space, which we’ll call ’coin-flip’

C. The unitary transformation C is extremely arbitrary, and altering it allows us to

design a large family of walks with a wide range of behaviours.

IF we want unbiased C operation, i.e. to get equal probability of moving rightward

or leftward after the coin-flip C followed by translation operation S, we can use most

common Hadamard coin

The Hadamard coin H is a common balanced unitary coin.

H =
1√
2

(
1 1

1 −1

)
(70)
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| ↑⟩ ⊗ |0⟩ H−→ 1√
2
(|0⟩+ |1⟩)⊗ |0⟩

S−→ 1√
2
(| ↑⟩ ⊗ |1⟩+ | ↓⟩ ⊗ | − 1⟩)

(71)

The quantum random walk of T steps is defined as the transformation UT , where U,

acting on H = HC ⊗HP is given by

U = S (̇C ⊗ I). (72)

Let us evolve the quantum walk (without intermediate measurements) for some steps

starting in the initial state |ϕin⟩ = | ↓⟩ ⊗ |0⟩ and examine the induced probability

distribution on the positions to show how the quantum walk differs from its classical

counterpart.

|ϕin⟩
U−→ 1√

2
(| ↑⟩ ⊗ |1⟩ − | ↓⟩ ⊗ | − 1⟩)

U−→ 1√
2
(| ↑⟩ ⊗ |2⟩ − (| ↑⟩ − | ↓⟩)⊗ |0⟩+ | ↓⟩ ⊗ | − 2⟩

U−→ 1

2
√
2
(| ↑⟩ ⊗ |3⟩+ | ↓⟩ ⊗ |1⟩+ | ↑⟩ ⊗ | − 1⟩ − 2| ↓⟩ ⊗ | − 1⟩ − | ↓⟩ ⊗ | − 3⟩

U−→ 1

2
√
2
(| ↑⟩ ⊗ |4⟩+ (| ↑⟩+ ↓⟩)⊗ |2⟩ − (3| ↑⟩+ | ↓⟩)⊗ |0⟩+ (| ↓⟩ − | ↑⟩)⊗ |2⟩

+ | ↓⟩ ⊗ | − 4⟩)
(73)

1. Measuring the coin state in the standard basis gives each of | ↑⟩ ⊗ |1⟩, | ↓⟩ ⊗ |1⟩
with probability 1

2
. After this measurement there is no correlation between the

positions left and the state would collapse to one of its eigenstate . We get the

plain classical random walk on the line if we continue the quantum walk with

such a measurement at each iteration.

2. We won’t measure the coin register during intermediate iterations in the quan-

tum random walk, but we will maintain the quantum correlations between dis-

tinct positions and let them interfere in following stages.
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Figure 23: After T steps of classical random walk, the probability of particle being at
position i

Figure 24: : The probability of being found at position i after T steps of the quantum
random walk on the line, with the initial state |ϕin⟩ = | ↓⟩ ⊗ |0⟩. As you can see that
this distribution starts to differ from the classical distribution from T = 3 onwards .
Furthermore the quantum random walk is asymmetric with a drift to the left which
was also shown by Equation 73

.

This example shows that the probability distribution induced by the quantum walk

differs from the classical one.

The quantum random walk create an asymmetric probability distribution, which is

’drifting’ to the left. The Hadamard coin treats the two orientations | ↑⟩ and | ↓⟩
differently, resulting in the asymmetry ; it multiplies the phase by 1 only in the case of

| ↓⟩. Implicitly, this results in more cancellations for right-to-left routes (destructive

interference), whereas particles moving left to right interfere constructively.
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PROJECT WORK FROM FOURTH SEMESTER

8.2.1 Implementation on IBM computer

Plotting the Graph of the result of our simulation with final position vector value on

the x-axis and the number of occurrences of that position vector value on the y-axis.

This provides us the probability distribution of the position of the walker.

Initially let our walker be at position |1⟩.

Figure 25: Probability distribution of walker with initial state of coin vector |1⟩ and
using H as coin operator.

Now, Changing the initial state of coin vector to |0⟩ i.e. | ↑⟩.
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Figure 26: Probability distribution of walker with initial state of coin vector 1 and
using H as coin operator.

Initialize the coin qubit in a balanced state |i⟩, where |i⟩ = |0⟩+|1⟩√
2

.

Figure 27: Probability distribution of walker with initial state of coin vector as |i⟩ i.e.
balanced state

Refer Appendix Appendix E for Python code of Coined Quantum Walk in QISKIT.
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Conclusion

• This strange probability distribution is due to the repeated application of Hadamard

gate on the coin qubit as H gate treats the the two states differently and applies

a phase to | ↓⟩ state. for figure Figure 25 interference causes our coin qubit

to drift towards left but it also creates a large bump on the extreme right side

which can be verified by the mathematics which we did in above section and

from table Figure 23

• Mirrored probability distribution must be obtained when the coin vector is in

opposite state i.e. | ↑⟩ which is verified by figure Figure 26

• In figure Figure 27 we obtained a symmetric probability distribution as our coin

state was balanced and thus interference over time does not lead to a drift in

particular side
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8.3 Staggered Quantum Walk

We construct this walk based on a graph tessellation, that is a set of disjoint cliques

over all vertices; and a graph covering, that is a family of tessellations, where every

edge belongs to, at least, one tessellation.[6]

Preliminaries

Clique

a clique of a graph G is an induced sub-graph of G that is complete .In a partition of

graph into cliques, each element of the partition is a clique, and no two elements of

the partition can share a vertex as shown in figure Figure 28. And every vertex of a

clique should be connected.

Figure 28: All possible cliques of given graph G

Tessellation

A tessellation or tiling is the covering of a surface, often a plane, using one or more

geometric shapes, called tiles, with no overlaps and no gaps. In graph theory, a

tessellation T is a partition of the graph into cliques, where each clique is called a

polygon (or a cell), such that the union of the polygons covers the vertex set of graph.

An edge belongs to the tessellation if and only if both endpoints of the edge belong

to the same polygon. The set of edges belonging to T is denoted by E(T ).
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Figure 29: Possible tessellations of given graph G

8.3.1 SQW on 1D lattice

Considering an infinite line, we can tessellate this graph as,

Tα = {{2x, 2x+ 1} : x ∈ Z}

Tβ = {{2x+ 1, 2x+ 2} : x ∈ Z}
(74)

Figure 30: Caption

We may define state αx associated to tessellation Tα and state βx associated to tes-

sellation Tβ such as

|αx⟩ =
|2x⟩+ |2x+ 1⟩√

2

|βx⟩ =
|2x+ 1⟩+ |2x+ 2⟩√

2

(75)
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and operators associated to each tesselation as

|Hα⟩ = 2
+∞∑

x=−∞

|αx⟩⟨αx| − I

|Hβ⟩ = 2
+∞∑

x=−∞

|βx⟩⟨βx| − I
(76)

[1]Let us take a case of N-cycle whose vertices v, are labelled by 0,1,...N-1 and assume

N to be even. Each vertex is associated with a basis vector |v⟩ with a computational

basis{|x⟩ : x = 0, 1, 2...N − 1} in a Hilbert space HN . we can tessellate this graph as,

Tα = {{2x, 2x+ 1} : 0 ≤ x ≤ N/2− 1}

Tβ = {{2x+ 1, 2x+ 2} : 0 ≤ x ≤ N/2− 1}
(77)

Working with n=2 qubit case, i.e. N = 2n = 4.

Figure 31: cycle with N=4 vertices
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|αx⟩ =
|2x⟩+ |2x+ 1⟩√

2

|α0⟩ =
|0⟩+ |1⟩√

2
=

1√
2


1

1

0

0



|α1⟩ =
|2⟩+ |3⟩√

2
=

1√
2


0

0

1

1



(78)

|βx⟩ =
|2x+ 1⟩+ |2x+ 2⟩√

2

|β0⟩ =
|1⟩+ |2⟩√

2
=

1√
2


0

1

1

0



|β1⟩ =
|3⟩+ |0⟩√

2
=

1√
2


1

0

0

1



(79)
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Finding Hamiltonian operator for tessellation Tα

|Hα⟩ = 2

N
2
−1∑

x=0

|αx⟩⟨αx| − I

|Hα⟩ = 2
1∑

x=0

|αx⟩⟨αx| − I

= 2(|α0⟩⟨α0||α1⟩⟨α1|)− I

=


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1


=⇒ |Hα⟩ = I⊗ X

(80)

Finding Hamiltonian operator for tessellation Tβ

|Hβ⟩ = 2

N
2
−1∑

x=0

|βx⟩⟨βx| − I

|Hβ⟩ = 2
1∑

x=0

|βx⟩⟨βx| − I

= 2(|β0⟩⟨β0||β1⟩⟨β1|)− I

=


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0



=⇒ |Hβ⟩ =


0 1

0 1

1 0

1 0



(81)
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Operators Hα and Hβ in matrix form are given by,

|Hα⟩ = I⊗ X

|Hβ⟩ =

0 1

I⊗ X
1 0



Here, x=

(
0 1

1 0

)
and empty entries are 0.

Evolution operator for SQW is given by

U = exp (iθHα) exp (iθHβ)

Uα = exp (I⊗X)

Uα = I⊗Rx(2θ) (82)

and

Uβ =

 cos (θ) −i sin (θ)
I⊗ X

−i sin (θ) cos (θ)

 (83)

Now we can decompose Uβ into Uα via a similarity transpose Uβ = P−1UαP where

P is a permutation matrix which shifts the walker to the right and P−1 shifts to the

left.

P =
∑
x

|x+ 1⟩⟨x| =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0


So the Staggered Quantum walk evolution operator can thus be written as,

U = UβUα = P−1UαPUα (84)

As we can see P is clearly an increment operator and P−1 is an decrement operator.
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Figure 32: General circuit for Staggered Quantum Walk

8.3.2 Implementation on IBM Computers

Figure 33 refers to the 1D SQW circuit for one walk step on a lattice with 16 vertices

using 4 qubits which is to be implemented using QISKIT.

Figure 33: One walk step of SQW in 1D lattice using 4 qubits

Refer Appendix F for Python code of 1D SQW in QISKIT. Figure 34 and Figure 35
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refers to Probability distribution plots of 1D SQW employing 7 qubits obtained using

QISKIT. In fig:Figure 34 the action of evolution operator spreads the position among

vertices 0,32,64 and 127.

Figure 34: Probability distribution after one step of SQW using 7 qubits

Figure 35: Probability distribution after ten step of SQW using 7 qubits
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8.3.3 Quantum Walk on 2-D square lattice

Let us consider a 2D sqaure lattice with cyclic boundary conditions having
√
N×

√
N

vertices which are labelled as 0,1,...N-1 where N is a square integer.

Figure 36: One walk step of SQW

A total of four tessellations are required to cover all edges of the graph and to define

evolution operator of Staggered Quantum Walk on 2D lattice. Most simplest way to

do so is given in Figure 37.

Figure 37: tessellation cover of the two-dimensional lattice with cyclic boundary

Using equation Equation 82 and Equation 89 the evolution operator for above tessel-

lation is given as,

U00 =

(
I⊗

[
1 0

0 0

])
⊗ Uα +

(
I⊗

[
0 0

0 1

])
⊗ Uβ

U10 =

(
I⊗

[
1 0

0 0

])
⊗ Uβ +

(
I⊗

[
0 0

0 1

])
⊗ Uα
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where U00 and U10 is evolution operator for green and blue (first and second) tessel-

lation respectively.

U01 = Uα ⊗

(
I⊗

[
1 0

0 0

])
+ Uβ ⊗

(
I⊗

[
0 0

0 1

])

U11 = Uβ ⊗

(
I⊗

[
1 0

0 0

])
+ Uα ⊗

(
I⊗

[
0 0

0 1

])

and U01 and U11 is evolution operator for yellow and brown (third and fourth) tessel-

lation respectively.

So, the evolution operator for 2D SQW is given by,

U2D = U11U10U01U00

8.3.4 Decomposition of evolution operator

U00 = I⊗ |0⟩⟨0| ⊗ Uα + I⊗ |1⟩⟨1| ⊗ Uβ

= Q−1
x (I⊗ Uα)Qx

U10 = I⊗ |0⟩⟨0| ⊗ Uα + I⊗ |1⟩⟨1| ⊗ Uβ

= (I⊗X ⊗ I)U00(I⊗X ⊗ I)

where Qx is a controlled P gate with control qubit |q(n
2
−1)⟩ and targets |qn

2
....qn−1⟩,

and is given by,

Qx = I⊗ |0⟩⟨0| ⊗ I+ I⊗ |1⟩⟨1| ⊗ P

similarly,

U01 = Uα ⊗ I⊗ |0⟩⟨0|+ Uβ ⊗ I⊗ |1⟩⟨1|

= Q−1
y (Uα ⊗ I)Qy
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U11 = Uα ⊗ I⊗ |1⟩⟨1|+ Uβ ⊗ I⊗ |0⟩⟨0|

= (I⊗X ⊗ I)U01(I⊗X ⊗ I)

where Qy is a controlled P gate with control qubit |q(n−1)⟩ and targets |q0....q(n
2
−1)⟩,

and is given by,

Qy = I⊗ I⊗ |0⟩⟨0|+ P ⊗ I⊗ |1⟩⟨1|

8.3.5 Implementation on IBM computers

The evolution operator for 2D SQW is given by,

U2D = U11U10U01U00

Figure 38 refers to the 2D SQW circuit for one walk step on a lattice with 16 vertices

using 4 qubits which is to be implemented using QISKIT.

Figure 38: 2D SQW evolution operator circuit for one walk step on a lattice with 16
vertices using 4 qubits

Refer Appendix G for Python code of 2D SQW in QISKIT. Figure 39 and Figure 40
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refers to Probability distribution plots of 2D SQW obtained using QISKIT.

Figure 39: Probability distribution after four steps of 2D SQW with |0000⟩ as walkers
initial position.

Figure 40: Probability distribution after one step of 2D Staggered Quantum walk,
with |0000⟩ as initial state using qasm simulator on 4 qubits

55



8.4 Szegedy’s Quantum Walks

[8] Szegedy’s Quantum Walk on a bipartite graph Γ(X, Y,E) with biadjacent matrix

is defined on a Hilbert space Hmn = Hm ⊗ Hn, where m = |X| and n = |Y | . The

QW is driven by the unitary operator

U = R0R1 (85)

R0 = 2
∑
xϵX

|ϕx⟩⟨ϕx| − I (86)

R1 = 2
∑
yϵY

|ψy⟩⟨ψy| − I (87)

for example, Let us take a line graph as in L(Γ)Figure 41.

Figure 41: line graph L(Γ)

Here two tessellations are required to cover all the edges and vertices of this line graph.

These tessellations are represented by orange and blue coloured tiles Figure 42.
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Figure 42: Line graph L(Γ) with a two-colorable clique partition labeled by the
vertices of Γ.

Staggered Quantum Walk vectors of tessellation α (orange) are

|α0⟩ =
1

2
(|1⟩+ |2⟩+ |3⟩+ |4⟩)

|α1⟩ =
1

2
(|5⟩+ |6⟩+ |7⟩+ |8⟩) (88)

and Staggered Quantum Walk vectors of tessellation β (blue) are

|β0⟩ =
1√
2
(|1⟩+ |5⟩)

|β1⟩ =
1√
2
(|2⟩+ |7⟩)

|β2⟩ =
1√
2
(|4⟩+ |6⟩)

|β3⟩ =
1√
2
(|4⟩+ |8⟩)

(89)

Figure 43 represents a bipartite graph Γ of line graph L(Γ). Notice that there is

a edge-vertex correspondence α0β0 ↔ 1, α0β1 ↔ 2, α0β2 ↔ 4, α0β3 ↔ 3, α1β0 ↔
5, α1β1 ↔ 6, α1β2 ↔ 8, α1β3 ↔ 7.
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Figure 43: bipartite graph Γ of line graph L(Γ)

For a given two-colorable tessellations of a line graph with one vertex in each polygon

intersection, it is possible to find the bipartite root graph.

As here for line graph L(Γ), take polygon α0 in L(Γ). Selecting the polygons of

tessellation β that have overlap with α0, we obtain vector |ϕ0⟩. Similarly we can

obtain the other vectors used by szedegy’s model.

Szegedy’s model in Γ uses the following vectors,

|ϕ0⟩ =
1

2
|α0⟩(|β0⟩+ |β1⟩+ |β2⟩+ |β3⟩)

|ϕ1⟩ =
1

2
|α1⟩(|β0⟩+ |β1⟩+ |β2⟩+ |β3⟩)

(90)

and

|ψ0⟩ =
1√
2
(|α0⟩+ |α1⟩)|β0⟩

|ψ1⟩ =
1√
2
(|α0⟩+ |α1⟩)|β1⟩

|ψ2⟩ =
1√
2
(|α0⟩+ |α1⟩)|β2⟩

|ψ3⟩ =
1√
2
(|α0⟩+ |α1⟩)|β3⟩

(91)

From Equation 90 and Equation 91 we can find R0 and R1 using Equation 86 and

Equation 87 and thus find evolution operator for Szegedy’s Quantum walk U as given

in Equation 85.
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9 Future Scope

Random walks have applications in so many fields of scientific enquiry, ranging from

physics, to computer science, to biology. For example we can have ion trap based

implementation of random walk on a line.[9]

Implementation of random walk has been proposed by D¨ur et al.[3] Also large number

of graphs have yet to be investigated in the context of quantum walks.

just like with classical random walks, we can use quantum random walks in the

design of algorithms. This can give us complexity separations in the quantum query

model by looking at glued trees (two binary trees attached leaf-to-leaf via a random

permutation); there is no classical randomized algorithm (walk or otherwise) to get

from one root to the other in a polynomial number of queries, but the quantum walk

does it in polynomial number of queries.[4]

Also we can use Quantum Walk search to look for topological defects of the entire

configuration space. Until now, the Quantum Walk search has only been used to

find ’marked nodes,’ as we’ll study in the unsorted search Grover algorithm or good

configurations within the configuration space that an oracle has specified. In this

case, though, the QW search can be employed to hunt for topological faults, which

are configuration space features. This suggests that instead of focusing on simple

hole flaws in 2 D crystals, more general topological classification problems should

be pursued. Grover search could be a natural occurrence, such as when fermions

propagate in crystalline materials under specific conditions[7].

There are numerous reasons to concentrate on the Grover search among all quantum

algorithms. For starters, because it transforms any brute force O(N) problem into

an O(
√
N) problem. Even just having this quantum algorithm would be incredibly

beneficial. Second, because of its extraordinary robustness: the algorithm is available

in a variety of variations and has been reworked in a variety of ways, including in

terms of resonance effect.

Hence we hope to use quantum random walk features to find more efficient algorithms

on a quantum computer and apply to spin networks to study quantum gravity.
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10 Conclusion

In this paper, we have formally studied about the basics of Quantum Computation

and worked through some of the basic Quantum Algorithms and implemented it using

qiskit. Then these simulations are executed on the Quantum Computing simulator

and probability distributions are obtained which verified our results. From this we

got the basic understanding of Quantum Algorithms and how to implement them on

Quantum computers. Then we studied the most- straightforward one dimensional

Random walks and came across some of the strange features of quantum random

walk.

1. Here we came across the effect that even though our translation operator dis-

places by l, in some cases the particle will jump much further than l (the prob-

ability of this to happen is very less). Whereas classically it can not go beyond

l

2. We can generate the Quantum Random Walk as per our requirement just by

choosing the appropriate coin operator. Here we took example of Hadamard

as coin operator, after several interference over time we noticed a drift to the

one side in position of the walker. It started to differ from classical Random

Walk after the T=3 time steps. We can obtain classical random walk if we take

measurement after every step and do not allow the states to interfere.

3. In the purely quantum case the variance of the walk varies as σ2 ≈ T 2, whereas

in classical case σ2 ≈ T which shows the quadratic speed of random walk

implementation in quantum case.

And then we studied about Staggered Quantum Walk and employed Staggered Quan-

tum walk on 1D and 2D lattice.
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A Teleportation circuit in QISKIT

Initializing the state to be teleported

First, create a quantum circuit that creates the state
√
0.70|o⟩+

√
0.30|1⟩

import numpy as np

from qiskit import IBMQ, Aer

from qiskit.quantum_info import Operator

from qiskit import QuantumCircuit, execute

from qiskit.visualization import plot_histogram

from qiskit.tools.jupyter import *

def initialize_qubit(given_circuit, qubit_index):

import numpy as np

given_circuit.initialize([np.sqrt(0.70), np.sqrt(0.30)], qubit_index)

return given_circuit

#create entanglement between Alice's and Bob's qubits.

def entangle_qubits(given_circuit, qubit_Alice, qubit_Bob):

given_circuit.h(qubit_Alice)

given_circuit.cx(qubit_Alice, qubit_Bob)

return given_circuit

#do a Bell measurement of Alice's qubits.

def bell_meas_Alice_qubits(given_circuit, qubit1_Alice, qubit2_Alice, clbit1_Alice, clbit2_Alice):

given_circuit.cx(qubit1_Alice, qubit2_Alice)

given_circuit.h(qubit1_Alice)

given_circuit.barrier()

given_circuit.measure(qubit1_Alice, clbit1_Alice)

given_circuit.measure(qubit2_Alice, clbit2_Alice)

return given_circuit

Finally, we apply controlled operations on Bob’s qubit.
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1. an X gate is applied on Bob’s qubit if the measurement outcome of Alice’s

second qubit, clbit2 Alice, is 1.

2. a Z gate is applied on Bob’s qubit if the measurement outcome of Alice’s first

qubit, clbit1 Alice, is 1.

def controlled_ops_Bob_qubit(given_circuit, qubit_Bob, clbit1_Alice, clbit2_Alice):

given_circuit.x(qubit_Bob).c_if(clbit2_Alice, 1)

given_circuit.z(qubit_Bob).c_if(clbit1_Alice, 1)

return given_circuit

#imports

from qiskit import QuantumRegister, ClassicalRegister

#set up the qubits and classical bits

all_qubits_Alice = QuantumRegister(2)

all_qubits_Bob = QuantumRegister(1)

creg1_Alice = ClassicalRegister(1)

creg2_Alice = ClassicalRegister(1)

#QUANTUM TELEPORTATION circuit here

# Initialize

mycircuit = QuantumCircuit(all_qubits_Alice, all_qubits_Bob, creg1_Alice, creg2_Alice)

initialize_qubit(mycircuit, 0)

mycircuit.barrier()

#Entangle

entangle_qubits(mycircuit, 1, 2)

mycircuit.barrier()

#Do a Bell measurement

bell_meas_Alice_qubits(mycircuit, all_qubits_Alice[0], all_qubits_Alice[1], creg1_Alice, creg2_Alice)

mycircuit.barrier()

# Apply classically controlled quantum gates

controlled_ops_Bob_qubit(mycircuit, all_qubits_Bob[0], creg1_Alice, creg2_Alice)

#Look at the complete circuit
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mycircuit.draw(output='mpl')

Figure 44: Teleportation circuit
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B Deutsh Josza Algorithm in QISKIT

import numpy as np

from qiskit import IBMQ, BasicAer

from qiskit import QuantumCircuit, execute

from qiskit.visualization import plot_histogram

from qiskit.tools.jupyter import *

def dj_oracle(case,n):

oracle_qc=QuantumCircuit(n+1)

if case=="bal":

for qubit in range(n):

oracle_qc.cx(qubit,n)#if there are even no. of 1 then last qubit=0

if case=="cons":

out=np.random.randint(2)

if out==1:

oracle_qc.x(n)

oracle_gate=oracle_qc.to_gate()

oracle_gate.name="oracle" #shows when we'll display the circuit

return oracle_gate

#DEUTSCH JOZSA ALGORITHM

def dj_algorithm(n,case='random'):

dj_ckt=QuantumCircuit(n+1,n) # n+1=q_reg, n=c_reg

for qubit in range(n):

dj_ckt.h(qubit)

dj_ckt.x(n)

dj_ckt.h(n) #it creates £|-\rangle£ state

#Append oracle circuit

if case=='random':

random=np.random.randint(2)
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if random==0:

case="cons"

else:

case="bal"

oracle=dj_oracle(case,n)

dj_ckt.append(oracle,range(n+1))

#measuring n qubits

for i in range(n):

dj_ckt.h(i)

dj_ckt.measure(i,i)

return dj_ckt

n=4

dj_ckt=dj_algorithm(n)

dj_ckt.draw()

Figure 45: DJ circuit for n=4 qbits

TO CHECK RESULT

backend=BasicAer.get_backend('qasm_simulator')

shots=2084

sj_ckt=dj_algorithm(n,'bal')

results=execute(dj_ckt,backend=backend,shots=shots).result()

answer=results.get_counts()

plot_histogram(answer)
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Figure 46: result
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C Steps to write Grover’s Algorithm

import numpy as np

from qiskit import IBMQ, Aer

from qiskit.quantum_info import Operator

from qiskit import QuantumCircuit, execute

from qiskit.visualization import plot_histogram

from qiskit.tools.jupyter import *

def phase_oracle(n,indm,name='oracle'):

qc=QuantumCircuit(n,name=name)

o_matrix=np.identity(2**n)

for indm in indm:

o_matrix[indm,indm]=-1

qc.unitary(Operator(o_matrix),range(n))\ \ #turning unitary matrix into an operartor of n qubits

return qc

def diffuser(n):

qc=QuantumCircuit(n,name='Diff="V"')

qc.h(range(n))

qc.append(phase_oracle(n,[0]),range(n))

qc.h(range(n))

return qc

def grover(n,marked):

qc=QuantumCircuit(n,n)

r=int(np.round(np.pi/(4*np.arcsin(np.sqrt(len(marked)/2**n)))-1/2))

print(f'{n qubits,basis state {marked marked},{r rounds') }}

qc.h(range(n)) #to get state £|s\rangle£

for i in range(r):

qc.append(phase_oracle(n,marked),range(n))

qc.append(diffuser(n),range(n))

qc.measure(range(n),range(n))

return qc
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n=4

x=np.random.randint(2**n)

marked=[x]

qc=grover(n,marked)

qc.draw(output='mpl')

Figure 47: GA output for n=4 qbits

backend=Aer.get backend('qasm simulator')

result=execute(qc,backend,shots=10000).result()

counts=result.get counts(qc)

print(counts)

print(np.pi/(4*np.arcsin(np.sqrt(len(marked)/2**n)))-1/2)

plot histogram(counts)

Figure 48: Marked state |110⟩ has highest probability
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D Classical random walk in QISKIT

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

from numpy import random

#Defines all of the necessary parameters

N = 50 # Defines the total number of steps our walker will take

pr = 0.5 #Defines the probability of our walker stepping to the right

i = 0 # Defines the initial position of our walker

def random_walk(pr, N, i):

position = i

for j in range( 0 , N):

coin_flip = list(np.random.choice(2, 1,p=[1-pr,pr])) # Flips our weighted coin

position += 2*coin_flip[0]-1 # Moves our walker according to the coin flip

return position

print("The walker is located at: x = {var}".format(var = random_walk(pr, N, i)))

The walker is located at: x = -6

def dist(runs, N):

positions = range(-1*N, N+1)

instances = [0 for i in range(-1*N, N+1)]

for k in range(0, runs):

result = random\_walk(pr, N, i)

instances[positions.index(result)] += 1

plt.bar(positions, [n/runs for n in instances])

plt.show()

dist(10000, N)

import scipy

def binomial(n,k):

from math import factorial

b=factorial(n)/((factorial(n-k))*(factorial(k)))

return(int(b))
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def height_calculate(x, N, pr):

a = (N + x)/2

b = (N - x)/2

if (x%2 == 0):

var = binomial(N, a)*(pr**a)*((1-pr)**b)

else:

var = 0

return var

positions = range(-1*N, N+1)

heights = [height_calculate(x, N, pr) for x in positions]

plt.bar(positions, heights)

plt.show()

E Coined Quantum Random walk in 1D in QISKIT

#IMPORTS

import numpy as np

%matplotlib inline

from matplotlib import pyplot as plt

from qiskit import *

from qiskit import IBMQ, Aer

from qiskit.quantum_info import Operator

from qiskit import QuantumCircuit, execute

from qiskit.visualization import plot_state_city

from qiskit.tools.visualization import plot_histogram, plot_bloch_vector

import qiskit.quantum_info as qi

from qiskit.tools.jupyter import *

from qiskit.aqua.components.uncertainty_models import NormalDistribution,UniformDistribution,LogNormalDistribution

#INCREAMENT OPERATOR

n=7

def inc_op(n):

circuit=QuantumCircuit(n,name='inc')

qr=circuit.qubits
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for i in range(n-1,0,-1):

circuit.x(i)

circuit.mct([*range(i,n)],i-1)

circuit.x(n-1)

return circuit

inc_gate = inc_op(n).to_gate()

inc_gate.definition.draw()

#DECREAMENT OPERATOR

def dec_op(n):

circuit=QuantumCircuit(n,name='dec')

qr=circuit.qubits

for i in range(0,n-1,1):

circuit.mct([*range(i+1,n)],i)

if i<n-2:

circuit.x(i+1)

return circuit

dec_gate = dec_op(n).to_gate()

dec_gate.definition.draw()

#GENERATING WALK

Initial_state = str(input("Initial state? (Type 0/1/i): ")).lower()

def generate_walk(n,times,Initial_state):

qc=QuantumCircuit(n,n)

if Initial_state=='1':# down state

qc.x(1)

elif Initial_state=='0': # up state

qc.x(1)

qc.x(n-1)

else: #balanced state

qc.x(1)
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qc.h(n-1)

qc.s(n-1)

for i in range(times):

qc.append(qrw(n),range(n))

qc.measure(range(n),range(n))

return qc

n=7

times=60

qc=generate_walk(n,times,Initial_state)

qc.draw('mpl')

#PLOT OF PROBABILITY V/S POSITION

backend=Aer.get_backend('qasm_simulator')

result=execute(qc,backend,shots=5000).result()

counts=result.get_counts(qc)

print(counts)

sortedcounts = []

sortedkeys = sorted(counts)

for i in sortedkeys:

for j in counts:

if(i == j):

sortedcounts.append(counts.get(j))

plt.suptitle('Uniform Distribution')

plt.xlabel("x")

plt.ylabel("Probability")

plt.plot(sortedcounts)

plt.show()

#PLOTTING HISTOGRAM

simulator=Aer.get_backend('qasm_simulator')

result=execute(qc,backend=simulator).result()

counts=result.get_counts(qc)
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plot_histogram(result.get_counts(qc))

#CITYPLOT

def generate_walk(n,times):

qc=QuantumCircuit(n,n)

for i in range(times):

qc.append(qrw(n),range(n))

return qc

qc_AB= generate_walk(4,10)

psi_AB = qi.Statevector.from_instruction(qc_AB)

psi_AB.draw('latex', prefix='|\\psi_{AB}\\rangle = ')

rho_AB = qi.DensityMatrix.from_instruction(qc_AB)

rho_AB.draw('latex', prefix='\\rho_{AB} = ')

plot_state_city(rho_AB.data, title='Density Matrix')

F 1D Staggered Quantum walk in QISKIT

#IMPORTS

import numpy as np

%matplotlib inline

from matplotlib import pyplot as plt

from qiskit import *

from qiskit import IBMQ, Aer

from qiskit.quantum_info import Operator

from qiskit import QuantumCircuit, execute

from qiskit.tools.visualization import plot_histogram, plot_bloch_vector

from qiskit.visualization import plot_state_city

import qiskit.quantum_info as qi

from qiskit.tools.jupyter import *

#CIRCUIT
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#Increament operator

def inc_op(n):

circuit=QuantumCircuit(n,name='inc')

qr=circuit.qubits

for i in range(n-2):

circuit.mcrx(np.pi,[*range(i+1,n)],i)

circuit.cx(n-1,n-2)

circuit.x(n-1)

return circuit

inc_gate = inc_op(n).to_gate()

#Decreament Operator

def dec_op(n):

circuit=QuantumCircuit(n,name='dec')

qr=circuit.qubits

circuit.x(n-1)

circuit.cx(n-1,n-2)

for i in range(n-3,-1,-1):

circuit.mcrx(np.pi,[*range(i+1,n)],i)

return circuit

dec_gate = dec_op(n).to_gate()

#Generating walk

theta=3*np.pi/2

def generate_walk(n,times):

circuit=QuantumCircuit(n,n)

qr=circuit.qubits

for i in range(times):

circuit.rx(theta/4,n-1)

circuit.append(inc_op(n),range(n))
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circuit.rx(theta/4,n-1)

circuit.append(dec_op(n),range(n))

circuit.measure(range(n),range(n))

return circuit

n=7

times=1

circuit= generate_walk(n,times)

circuit.draw('mpl')

#PLOTTING

backend=Aer.get_backend('qasm_simulator')

result=execute(circuit,backend,shots=5000).result()

counts=result.get_counts(circuit)

print(counts)

sortedcounts = []

sortedkeys = sorted(counts)

for i in sortedkeys:

for j in counts:

if(i == j):

sortedcounts.append(counts.get(j))

##Output-{'0100000': 469, '0000000': 2376, '1111111': 1048, '1000000': 1107}

plt.suptitle('Uniform Distribution')

plt.xlabel("probability")

plt.plot(sortedcounts)

plt.show()

#PLOTTING HISTOGRAM

simulator=Aer.get_backend('qasm_simulator')

result=execute(circuit,backend=simulator).result()

counts=result.get_counts(circuit)

76



plot=plot_histogram(result.get_counts(circuit))

plot

#CITYPLOT

def generate_walk(n,times):

qc_AB=QuantumCircuit(n,n)

for i in range(times):

qc_AB.rx(theta,n-1)

qc_AB.append(inc_op(n),range(n))

qc_AB.rx(theta,n-1)

qc_AB.append(dec_op(n),range(n))

return qc_AB

qc_AB= generate_walk(4,1)

psi_AB = qi.Statevector.from_instruction(qc_AB)

psi_AB.draw('latex', prefix='|\\psi_{AB}\\rangle = ')

rho_AB = qi.DensityMatrix.from_instruction(qc_AB)

rho_AB.draw('latex', prefix='\\rho_{AB} = ')

plot_state_city(rho_AB.data, title='Density Matrix')

G 2D Staggered Quantum walk in QISKIT

#IMPORTS

import numpy as np

%matplotlib inline

from qiskit import *

from qiskit import IBMQ, Aer

from qiskit.quantum_info import Operator

from qiskit import QuantumCircuit, execute

from qiskit.tools.visualization import plot_histogram, plot_bloch_vector

import qiskit.quantum_info as qi

from qiskit.quantum_info import Statevector

from qiskit.tools.jupyter import *
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from qiskit import IBMQ

#INCREAMENT OPERATOR

def inc_op(n):

circuit=QuantumCircuit(n,name='inc')

qr=circuit.qubits

for i in range(n-2):

circuit.mcrx(np.pi,[*range(i+1,n)],i)

circuit.cx(n-1,n-2)

circuit.x(n-1)

return circuit

qc = inc_op(2)

inc_gate = inc_op(2).to_gate()

cntrl_inc = inc_gate.control(1)

cntrl_inc.definition.draw()

#DECREAMENT OPERATOR

def dec_op(n):

circuit=QuantumCircuit(n,name='dec')

qr=circuit.qubits

circuit.x(n-1)

circuit.cx(n-1,n-2)

for i in range(n-3,-1,-1):

circuit.mcrx(np.pi,[*range(i+1,n)],i)

return circuit

dec_gate = dec_op(2).to_gate()

cntrl_dec = dec_gate.control(1)

cntrl_dec.definition.draw()

#GENERATE WALK

n=4

theta = 2*np.pi/3
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def qrw(n):

circuit=QuantumCircuit(n,name='qrw')

circuit.append(cntrl_inc,[1,2,3])

circuit.rx(theta,3)

circuit.append(cntrl_dec,[1,2,3])

circuit.append(cntrl_inc,[3,0,1])

circuit.rx(theta,1)

circuit.append(cntrl_dec,[3,0,1])

circuit.x(1)

circuit.append(cntrl_inc,[1,2,3])

circuit.rx(theta,3)

circuit.append(cntrl_dec,[1,2,3])

circuit.x(1)

circuit.x(3)

circuit.append(cntrl_inc,[3,0,1])

circuit.rx(theta,1)

circuit.append(cntrl_dec,[3,0,1])

circuit.x(3)

return circuit

def generate_walk(circuit,n,times):

initState = Statevector.from_label('0000')

circuit.initialize(initState)

for i in range(times):

circuit.append(qrw,range(n))

circuit.measure(range(n),range(n))

return circuit

n=4

times=4

circuit=QuantumCircuit(n,n)
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qr=circuit.qubits

generate_walk(circuit,n,times)

circuit.draw(output='mpl')

#PLOTTING HISTOGRAM

simulator=Aer.get_backend('qasm_simulator')

result=execute(circuit,backend=simulator).result()

plot_histogram(result.get_counts(circuit))

#ON IBM COMPUTERS

IBMQ.load_account()

provider=IBMQ.get_provider('ibm-q')

qcomp= provider.get_backend('ibmq_qasm_simulator')

job=execute(circuit,backend=qcomp)

from qiskit.tools.monitor import job_monitor

job_monitor(job)

result=job.result()

plot_histogram(result.get_counts(circuit))

#CITYPLOT

def generatewalk(n):

circuit=QuantumCircuit(n,n)

initState = Statevector.from_label('0000')

circuit.initialize(initState)

circuit=QuantumCircuit(n,name='qrw')

circuit.append(cntrl_inc,[1,2,3])

circuit.rx(theta,3)
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circuit.append(cntrl_dec,[1,2,3])

circuit.append(cntrl_inc,[3,0,1])

circuit.rx(theta,1)

circuit.append(cntrl_dec,[3,0,1])

circuit.x(1)

circuit.append(cntrl_inc,[1,2,3])

circuit.rx(theta,3)

circuit.append(cntrl_dec,[1,2,3])

circuit.x(1)

circuit.x(3)

circuit.append(cntrl_inc,[3,0,1])

circuit.rx(theta,1)

circuit.append(cntrl_dec,[3,0,1])

circuit.x(3)

return circuit

qc_AB= generatewalk(4)

psi_AB = qi.Statevector.from_instruction(qc_AB)

psi_AB.draw('latex', prefix='|\\psi_{AB}\\rangle = ')

rho_AB = qi.DensityMatrix.from_instruction(qc_AB)

rho_AB.draw('latex', prefix='\\rho_{AB} = ')

from qiskit.visualization import plot_state_city

plot_state_city(rho_AB.data, title='Density Matrix')

H Link to Source code:

https://github.com/ShwetaDadhwal/quantumrandomwalk.git
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