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ABSTRACT

This project report contains a detailed description of the basics of Quantum Error-
Correcting Codes. Quantum computation and technology is something that is be-
lieved to be the future of the human lifestyle. The main problem of this technology is
its delicacy. In physical world, it’s hard to maintain the quantum information error-
free for a long time. So the need for error-correction is enormous. So first we will see
what is the dependencies of quantum error correction on classical world. Then we
see some of the basic error correcting codes, it’s mathematical backgrounds, and ap-
plications. Then I study the application of Tensor Network which is, now, one of the
useful tools to study the Quantum many Body Physics, to deal the error correcting
code, especially the Surface code which is one of the most promising quantum error
correcting codes towards large-scale Quantum Computer.
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1 Introduction

When we talk about error-correction [1], we, in general, talk about open systems.
In all the algorithms or theories when one uses qubits for building states of super-
position - the qubits are assumed to be perfect throughout the process and have no
interaction with the surroundings - a closed system. But in the context of error-
correction, we consider the errors that are produced in a state as they interact with
the environment, and sometimes some unnecessary interactions that create those er-
rors or noise. The error is either a bit-flip, a phase-flip, or any arbitrary error (i.e.
the linear combination of bit-flip and phase-flip).

Schrödinger equation is something that is used to study any quantum system un-
der consideration. In most cases, we are not concerned with the time-dependent
interactions, so we use the time-independent part of it. Using Born-Oppenheimer
non-relativistic approximation we have the Schrödinger equation for an isolated N-
electron system as

Hψ = Eψ, (1.1)

Where, E and ψ = ψ(xi) are the energy and wavefunction of the system respectively.
The hamiltonian operator H is given by

H = −
N∑
i=1

1

2
∇2
i +

N∑
i=1

v(~ri) +
N∑
i<j

1

rij
, (1.2)

where,

v(~ri) = −
∑
k

Zk
rik

(1.3)

is the external potential due to nuclei of charge Zk acting on ith electron. The
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equation can be solved following certain boundary condition which makes the wave-
function well behaved. Condensed Matter physics tries to describe macroscopic prop-
erties of a quantum system. These properties arise from their macroscopic structures.
However due to exponential scaling it becomes very difficult to solve.

We have hydrogen system that can be solved exactly. This is a one-particle system
and we know the calculation is huge. Whereas, when we have a quantum system with
more than one particle the situation becomes harder to solve. Helium molecules with
only two particles cannot be solved exactly. We need to have approximations, though
we use educated guesses in considering approximations. But things get impossible
to be solved analytically when the number of the interacting particles is in the order
of Avogadro’s number. Then we use numerical or use other techniques to solve the
Hamiltonian of that system. As the number of particles in a system increases, the
dimension of the Hilbert space increases exponentially.

This mean-field theory generally avoids the correlations among the particles. To
solve this we often use simplified and effective Hamiltonian, especially in low-energy
regimes. As the structure of a solid is very regular, the Hamiltonian can be assumed
as particles on a lattice where the positions are fixed and the only degree of freedom
for them is their spin. For example, the Hubbard model or Heisenberg model takes
only local interactions into account. There are some renowned techniques like Quan-
tum Monte Carlo methods, Hartree-Fock method which is very effective in quantum
chemistry. To explore the systems with strong interaction or Entanglement, the Ten-
sor Network technique becomes so handy for a many-body quantum system. In the
later part of this thesis, I study this technique and using this calculated the Ground
State Energy of a system of a 2D lattice of Rydberg atoms and see how this technique
could be helpful in error correction considering error models in surface-17 code.

Here, I will explore the errors that we face while computing and the ways to correct
those. To do that, we take the error-correcting ideas from the classical world [2].
And then we try to implement those to correct the quantum errors. And then
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I calculate the Ground state energy of a system using a technique called Tensor
Network and the relation of this in the context of Quantum Error-Correction. We will
first see the basic differences between classical computers and quantum computers in
section (3). In section (4), we see the classical way of correcting errors starting with
Majority voting and its quantum counterpart including the syndrome measurements
and phase flip error. Then we see Shor’s 9-qubit code and the discretization of errors
in section (5). Next, we explore the visualization of different errors through quantum
channels in section (7). In section (8), we see the mathematical conditions for error-
correcting codes to be efficient. In section (9), we prove the classical hamming bound
and related terms and their quantum counterpart. We see one of the large classes
of Quantum error-correcting codes - the CSS (Calderbank-Shor-Stean)[13, 14] code
based on the features of Classical linear codes. After this, in the second half, I study
the Tensor Network, starting with Spin lattice models in section (10). In section (11),
a review of introduction in Tensor Network. Section (12) and (13) review the DMRG
process and Rydberg atoms respectively. Then in section (14), I applied the DMRG
calculation to find the Ground state of the Rydberg atoms system and provide the
energy trend. Then I review the application of Tensor Network contraction in the
context of Quantum error-correction, basically fusing the first and second part of
this thesis.

2 Scope and motivation

Today’s technology is dependent on classical principles. But quantum technology
is dependent on quantum principles namely superposition, quantum entanglement,
and interference. And quantum technology is very new with good exposure of 15
to 20 years and it is being developed exponentially. So the scope of this technology
is huge. Agriculture, communication, security, finance, banking system, etc every
aspect of life will be based on quantum technology within the next two decades or
so hopefully. And it has the potential to revolutionize our daily life.
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Now the motivation of doing the study of error correction is that the quantum bits
are very delicate. It gets corrupted very easily while interacting with environment.
In fact, this is the main bar that stops us from achieving the Quantum Supremacy.
So, it’s important to know about the types of errors to fix those as much as possible.

On the other hand, to study the many-body system with strong interaction, Tensor
Network technique is becoming popular nowadays. We also see a review of this and
use the DMRG algorithm to see the Ground state energy of a system like mentioned
above. It’s found that in most of the cases, this technique is useful and efficient in
simulating error models in a Quantum Circuits.

3 Literature Survey

Classical bits can be copied, and that makes the major voting possible for basic error
correction. But in quantum mechanics, copying a qubit is prohibited according to the
No-Cloning theorem [3]. For this, the quantum error correction may look impossible.
But Peter Shor showed that with a highly entangled state of ancillary qubits one can
perform error correction, in his 9-qubit error-correcting code [4]. In the case of
syndrome measurement, one has to measure the bit to diagnose the corrupted bit,
this also seems to put an obstacle to correcting errors for quantum data as we know
measuring a quantum state makes the state change all the information inside it.
But later, it was shown that using CNOT gates one can easily have the syndrome
measurement by not disturbing the actual quantum data. The first part of Quantum
Error Correction is reviewed based on the book written by M.A. Nielson and L.
Chuang [5].

Roger Penrose developed these graphical notations [6] which describe the Einstein
notations for tensor operations. The DMRG calculation was first invented by Steven
R. White in 1992 [7] to calculate the low energy of a 1D system. Here, I have chosen
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a particular system of Ryderg atoms whose Hamiltonian is mentioned in this paper
[8] and calculated it’s Ground State Energy. Then I reviewed the Tensor Network
contraction application which was performed by Fang Zhang [9].

4 Classical and quantum computation

In this section, we will see the basic working of Classical and Quantum Computation
in a nutshell. Eventually, we can see the differences between their working principles.

4.1 Classical computation:

1. In classical computers or machines we use voltage as our signal. ‘0’ means off
and ‘1’ means on. We call it ‘Bits’, which are the basics of classical computation
and information.

2. In this mode of computation, we get only one bit at a time as an output. For
example for one-bit system, we get either ‘0’ or ‘1’ at a time.

3. Classical technology follows Moore’s law[10] which says that the processing
power doubles every 3 or 4 years.

Growth: 21, 22, 23,. . . .

4. As the number of bits N goes to infinity the computation becomes somewhat
impossible. According to thermodynamics, every computation is analogous to
an engine cycle.

The efficiency is η = W
Qin

= Qin˘Qout
Qin

.

Let’s assume if δQ is the heat dissipated by an element of the computer per
unit time.
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Figure 1: Plotting of Moore’s law

∴ total waste → ∆Qwaste → NδQ

So, we’ve to have a good cooling system to make the extra heat go away from
the machine. Otherwise, it affects the other components. So the restriction
in mathematical term is ∆Qout

∆t
≤ ∆Qin

∆t
. One doesn’t follow the restriction and

makes his or her machine crash!!!

5. If the order of a problem increases like O(N) or O(lnN) or O(NlnN) i.e. poly-
nomial – it can be solved using classical computers. But, if the order increases
exponentially i.e. O(exp(N)), it cannot be solved by classical computers effi-
ciently.

6. From an N bit classical system one can have N bit of classical information.

4.2 Quantum computation:

1. In Quantum Computers we use any two-dimensional quantum system like pho-
tons, electron spin, NMR [11], trapped ions, etc. |0〉, |1〉 are what we call
the qubits (quantum counterparts of bits) – the building blocks of quantum
technology.

2. In this mode of computation, we get all the qubits of a system at once in
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superposition manner. For example, for a one qubit system we get |0〉, |1〉 at
the same time and can be written as

|ψ〉 =
1√
2

(|0〉+ |1〉). (4.1)

3. Quantum technology follows Nevan’s law[12] which says that the advancement
of the technology follows doubly exponential growth like 22, 24, 26,. . . . With
this, we would have our today’s laptops or smartphones by 1975.

4. In polar coordinate, Cn = rne
iφn , Cm = rme

iφm ∴ ρ = |Cn〉 〈Cm| = rnr
∗
mexp[i(φn−

φm)] Here, ∆φnm = (φn − φm) is called Decoherence.

This term is important as the largest problem of the construction of a scalable
Quantum Computer is our inability to maintain coherence. Thus the error of a
qubit after going through a channel is very high and increases with the number
of the quantum gates used.

5. As already shown for a one qubit system, we can also see that for a two-qubit
quantum system a state φ can be written as

|φ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉 , (4.2)

Where, α, β, γ and δ are complex numbers in general.

So, as one can see from the one-qubit quantum system, we get two bits of
classical information and from a two-qubit system, we get four bits of classical
information. Likewise, in general, from an N qubit quantum system, we get
2N bits of classical information.

6. According to the previous point, one can easily simulate a system with expo-
nential order, unlike classical ones. So the computation becomes more effective.
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One needs exponentially fewer amount of components to do the same calcula-
tion done by classical computers. Hence, the speed also increases.

Quantum computation is a different technology as a whole with a different
approach to solving problems using the weirdness of nature, hence having the
quantum advantages (Superposition, Entanglement, Interference) over the clas-
sical world.

5 Basic error correction

The fact that we have started to apply it to solve the real problems so recently and
scientists are hoping to get Quantum Supremacy in the very near future. Though
Google has done some benchmarking on Quantum Supremacy in 2019 [15]. So this
technology is very dynamic and progressing real fast. Now as technology develops
we have to be concerned about the errors that arise due to the interactions of the
system with its surroundings.

There is a whole different part which deals with this problem and tries to solve it
and have the perfect qubits as much as possible using different algorithms. In the
first half of the thesis, we will be introduced to such different algorithms and will try
to understand the errors first and then solve them. The advancement of quantum
technology demands a delicate study of error-correcting codes making it one of the
most important parts of quantum technology.

5.1 Majority voting (Bit flip):

Let’s think of a bit going through a classical noisy channel with P > 0 where P are
the probability of bit-flip and (1 − P ) is the probability of no error, and it’s also
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given that P < 1
2
.

Figure 2: Transition of qubits with their probabilities

Now to detect the error, what we do is we take the bit, make copies of it and map it
to three-bit codewords

0→ 000 (5.1)

1→ 111

After going through the noisy channel if e.g. the output is 001, given P is not high,
so the input was 000 i.e 0. Likewise, with the same condition, if the output is 011,
the input was 111 i.e. 1. If we get the output as 000 or 111, then we conclude that
no error has occurred or the channel is too noisy to detect the error.

Probability that two or more bits are flipped is
(

3
2

)
P 2(1 − P ) +

(
3
3

)
P 3 = 3P 2(1 −

P ) + P 3 = 3P 2 − 2P 3 (Given P > 1
2
)

As the method, we discussed above is a classical one, so we could make a copy of the
input state. In the quantum case, we take ancillary qubits and make the syndrome
measurement to detect the error. We map the qubits |0〉 and |1〉 as follows

|0〉 → |000〉 (5.2)

|1〉 → |111〉

18



The circuit for the mapping is

|φ〉 • • |φ〉

|0〉 |φ〉

|0〉 |φ〉

Figure 3: Mapping of quantum state in repetition code for phase flip error

Now let’s calculate the probability of bit flip for one or fewer qubit is
(

3
0

)
(1− P )3 +(

3
1

)
P (1− P )2 = 1− 3P 2 + 2P 3 (Given P > 1

2
)

∴ Error remains with probability 1 − (1 − 3P 2 + 2P 3) = 3P 2 − 2P 3, which is same
as for classical case.

5.2 Error detection (Syndrome measurement)

Pauli-Z gate is used to measure the syndrome and compare the states pairwise. For
repetition code we first apply Z1 ⊗ Z2 ⊗ I and then we apply I ⊗ Z2 ⊗ Z3, if we get
the same eigenvalue for both measurements, we take it as +1 and if we get different
values, we take it as −1. Different measurement values imply that some error has
occurred. With the simultaneous measurements of these two operators, the error on
a particular qubit is detected. Then we apply the X-gate on that particulate qubit
to get the actual input system.

Z =

[
1 0

0 −1

]
. (5.3)
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This gate has the eigenvalues +1 and −1 and acts on the qubits as follows Z |0〉 = |0〉;
Z |1〉 = − |1〉

• Steps:

1. Z1, Z2, Z3 gates are connected with each qubit respectively.

2. Z1Z2 and Z2Z3 measurements are taken respectively.

3. If for each pair both measurements are same then we call it 0 and 1 if
different.

|0〉 Z1 + |0〉

|0〉 Z2 + |0〉

|0〉 Z3 + |0〉

(a) When initial state is |000〉

|1〉 Z1 − |1〉

|1〉 Z2 − |1〉

|1〉 Z3 − |1〉

(b) When initial state is |111〉

Figure 4: No error

|1〉 Z1 − |1〉

|0〉 Z2 + |0〉

|0〉 Z3 + |0〉

(a) When initial state is |000〉

|0〉 Z1 + |0〉

|1〉 Z2 − |1〉

|1〉 Z3 − |1〉

(b) When initial state is |111〉

Figure 5: Error is on 1st qubit
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|0〉 Z1 + |0〉

|1〉 Z2 − |1〉

|0〉 Z3 + |0〉

(a) When initial state is |000〉

|1〉 Z1 − |1〉

|0〉 Z2 + |0〉

|1〉 Z3 − |1〉

(b) When initial state is |111〉

Figure 6: Error is on 2nd qubit

|0〉 Z1 + |0〉

|0〉 Z2 + |0〉

|1〉 Z3 − |1〉

(a) When initial state is |000〉

|1〉 Z1 − |1〉

|1〉 Z2 − |1〉

|0〉 Z3 + |0〉

(b) When initial state is |111〉

Figure 7: Error is on 3rd qubit

The circuits in Fig. (4), (5), (6), (7) are little misleading in the sense we don’t
measure it in this way. It’s just a representation. We measure those qubits separately
pairwise. The exact implementation of the syndrome measurement is shown in Fig.
(8) where we use controlled-X gates conjugated by H-gates (HXH = Z).

If we tabulate the result we would have a better overview of the syndrome measure-
ments
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Error Z1Z2 Z2Z3 Z1Z2 Z2Z3

Initial state |000〉 Initial state |111〉

No error + +
(0)

+ +
(0)

- -
(0)

- -
(0)

1st qubit error -+
(1)

+ +
(0)

+ -
(1)

- -
(0)

2nd qubit error +-
(1)

- +
(1)

- +
(1)

+ -
(1)

3rd qubit error ++
(0)

+ -
(1)

- -
(0)

- +
(1)

Table 1: All measurement eigenvalues and corresponding syndromes

So what we can see is as follows

1. When both measurements Z1Z2 and Z2Z3 are zero, there is no error.

2. When Z1Z2 = 1 and Z2Z3 = 0 then the error is on 1st qubit.

3. When Z1Z2 = 0 and Z2Z3 = 1 then the error is on 3rd qubit.

4. When both measurements Z1Z2 and Z2Z3 are one, then the error is on 2nd
qubit.

The whole circuit for repetition code will look like as follows if we use CNOT gates
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Figure 8: The whole circuit of repetition code in IBM Quantum Experience

Here in this figure, I have taken a particular example of a bit flip on 3rd qubit. q4
and q5 are called the syndrome qubits. Syndrome qubits are used to measure the
syndrome. As we know we can’t measure a qubit directly as it changes the state of
that qubit, so we take the help of ancillary qubits, in this case, q4 and q5.

The input state is |φ〉1 = |000〉, now we introduce the bit flip on 3rd qubit using
X-gate. After being introduced to bit flip the state becomes |φ〉2 = |001〉. Then
we introduce the syndrome qubit and the state now becomes |φ〉3 = |00100〉 =

|001〉⊗|00〉, where the last two qubits are for syndrome measurement. After applying
the CNOT gates the final state becomes |φ〉4 = |00101〉 = |001〉 ⊗ |01〉. So at this
stage when we measure the two syndrome qubits we get the state |01〉. To have a
better understanding we start with a known initial state. The initial state can be
|111〉 too, then the final state would be |φ〉4 = |11001〉 = |110〉⊗ |01〉. The syndrome
qubit is independent of the initial state. So this is a general idea irrespective of the
initial state. Now, looking at the syndrome state, we know that the error is on the
3rd qubit. we apply X-gate on the same to get the actual initial state.

Syndrome state |00〉 implies there is no error, |01〉 implies the error is on 3rd qubit
(as shown in the above example), |10〉 implies the error is on 1st qubit and |11〉
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implies the error is on 2nd qubit. By measuring the syndrome state we detect and
eventually correct the particular qubit.

5.3 Phase flip

The bit-flip error also happens in classical computation and we develop the error
correction of that particular type of error in quantum computation based on the
classical framework. Whereas, the classical world has no analogy of the quantum
property of phase. Hence, phase flip error does not happen in a classical case. When
we apply Z-gate on |1〉, it becomes − |1〉. Hence we say phase is flipped. This type of
error shows up in quantum channels. However, phase flip error can easily be turned
into a bit-flip error if we change the basis from |0〉 and |1〉 to |+〉 and |−〉 respectively.
We know |+〉 and |1〉 can be written as

|+〉 =
1√
2

(|0〉+ |1〉) (5.4)

|−〉 =
1√
2

(|0〉 − |1〉).

With respect to the Z-gate, |+〉 converts into |−〉 and vice-versa. So on this basis,
the phase-flip error acts like a bit-flip error.

|φ〉 • • H

|0〉 H

|0〉 H

Figure 9: Mapping of quantum state in repetition code for phase flip error
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• Steps:

1. First we encode the input state into Hadamard basis, if |φ1〉 is the in-
put state, then after mapping the state becomes |φ2〉 = H⊗3 |φ1〉 =

α |+ + +〉+ β |− − −〉.

2. Let’s assume the error is on the first qubit, the state becomes |φ3〉 =

α |−+ +〉+ β |+−−〉.

3. Then we decode the state by applying hadamard gate on each qubit and
the state becomes |φ4〉 = H⊗3 |φ3〉 = α |100〉+ β |011〉.

As one can see, the error now becomes the same as the bit-flip error. Now the same
procedure of bit-flip error can be followed to detect and correct the error.

6 Shor’s code

Shor’s 9 qubit code is a quantum code that protects the qubit from not only bit-
flip and phase flip error but also from arbitrary error which is basically a linear
combination of bit-flip and phase flip errors.

• Used for correcting:

1. Bit-flip, 2. Phase-flip, 3. Arbitrary error

• Limitation:

It corrects errors only on one qubit.

• Encoding:
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|0〉 → |+ + +〉 ≡ (|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)
2
√

2
(6.1)

|1〉 → |− −−〉 ≡ (|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)
2
√

2
.

• Circuit:

|φ〉 • • H • •

|0〉
|0〉

|0〉 H • •

|0〉
|0〉

|0〉 H • •

|0〉
|0〉

Figure 10: Circuit diagram for encoding in 9-qubit Shor’s Code
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• • H • •

•
•

• • H •

•
•

• • H •

•
•

Figure 11: Circuit diagram for decoding in 9-qubit Shor’s Code

• Measurement:

1. Bit flip

Like the bit-flip error correction here we take six measurements taking the
pairs of Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9 and do the same i.e. 0 for
same sign and 1 for different signs. After knowing all bit flip syndromes
we inverse them accordingly to correct the error.

2. Phase flip

Now, if phase flip happens then instead of taking each qubit, we consider
a block of qubits because if, say, there’s a bit flip on the first qubit then
the sign will change for all of the qubits in the first block.

The phase flip will change a state from |000〉+ |111〉 to |000〉−|111〉. Now
we compare the sign of the blocks
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|000〉+ |111〉 ; |000〉+ |111〉 (6.2)

|000〉 − |111〉 ; |000〉 − |111〉

|000〉+ |111〉 ; |000〉 − |111〉

|000〉 − |111〉 ; |000〉+ |111〉 .

The first two equations, as having the same signs, give the syndrome as
|0〉 and the last two give the syndrome |1〉.

Example: Let’s look at an example in which we consider the bit and
phase flip on the first bit in the input state a |0〉 + b |1〉 and see how the
error gets removed using Shor’s 9-qubit code step by step.

ENCODING:

a |0〉+ b |1〉 CNOTs−−−−→ a |000〉+ b |111〉

H⊗3

−−→ a
[
(|0〉+ |1〉)(|0〉+ |1〉)(|0〉+ |1〉)

]
+ b
[
(|0〉 − |1〉)(|0〉 − |1〉)(|0〉 − |1〉)

]
Ancillary states−−−−−−−−→ a

[
(|000〉+ |100〉)(|000〉+ |100〉)(|000〉+ |100〉)

]
+ b
[
(|000〉 − |100〉)(|000〉 − |100〉)(|000〉 − |100〉)

]
CNOTs−−−−→ a

[
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

]
+ b
[
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

]
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INTRODUCING ERROR:

σy error on 1st qubit−−−−−−−−−−−→ a
[
(|100〉 − |011〉)(|000〉+ |111〉)(|000〉+ |111〉)

]
+ b
[
(|100〉+ |011〉)(|000〉 − |111〉)(|000〉 − |111〉)

]

DECODING:

CNOTs−−−−→ a
[
(|111〉 − |011〉)(|000〉+ |100〉)(|000〉+ |100〉)

]
+ b
[
(|111〉+ |011〉)(|000〉 − |100〉)(|000〉 − |100〉)

]
CCNOT−−−−→ a

[
(|011〉 − |111〉)(|000〉+ |100〉)(|000〉+ |100〉)

]
+ b
[
(|011〉+ |111〉)(|000〉 − |100〉)(|000〉 − |100〉)

]
H⊗(1,4,7)

−−−−−→ a
[
|111〉 |000〉 |000〉

]
+ b
[
|111〉 |100〉 |100〉

]
1st,4th,7th qubits−−−−−−−−−−→ a

[
|1〉1 |0〉4 |0〉7

]
+ b
[
|1〉1 |1〉4 |1〉7

]
CNOTs−−−−→ a

[
|1〉1 |1〉4 |1〉7

]
+ b
[
|1〉1 |0〉4 |0〉7

]
initial state−−−−−−→ a |0〉+ b |1〉

So, we reached the same state which we started with despite the introduction of σy
error in between.
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7 Arbitrary error is discrete:

We know that any arbitrary state can be represented as a linear combination of phase
flip and bit flip i.e. Arbitrary flip = α(Phase-flip) + β(Bit-flip) The error operations
can be described by the Pauli matrices as follows

Bit flip error

X =

[
0 1

1 0

]
(7.1)

Phase flip error

Z =

[
1 0

0 −1

]
(7.2)

Phase-bit flip error

ZX = iY =

[
1 0

0 −1

]
(7.3)

No error

Z =

[
1 0

0 1

]
(7.4)

Any arbitrary single qubit E can be expressed as a linear combinations of no error
(I), bit flip error (X), phase flip error (Z) and phase flip error (iY ) – the Pauli
Matrices. To understand this let’s see the following.
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E =

(
E11 E12

E21 E22

)
(7.5)

= a

(
1 0

0 1

)
+ b

(
0 1

1 0

)
+ c

(
1 0

0 −1

)
+ d

(
0 1

−1 0

)

=

(
a+ c b+ d

b− d a− c

)

So, the elements of arbitrary single-qubit E are expressed as

E11 = a+ c (7.6)

E12 = b+ d

E21 = b− d

E22 = a− c

Henceforth,

a = E11+E22

2
(7.7)

b = E12+E21

2

c = E11−E22

2

d = E12−E21

2
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Therefore, a single qubit error can be written as

E =

(
E11 E12

E21 E22

)
(7.8)

=
E11 + E22

2
I +

E12+E21

2
X +

E11 − E22

2
Z +

E12 − E21

2
ZX.

So, an unnormalised state |φ′〉 is a superposition of above four terms.

|φ′〉 = E|φ〉 =
E11 + E22

2
I|φ〉+

E12 + E21

2
X|φ〉

+
E11 − E22

2
Z|ψ〉+

E12 − E21

2
ZX|φ〉. (7.9)

Thus after measuring the error syndromes, |φ′〉 collapses into one of the above states,
and by operating proper inversion operator we can recover the actual input state
|φ〉. The above result is very important as it shows that the quantum errors are
discrete .

8 Visualisation of different types of errors

To understand the physical interpretation of different errors better, the following
geometric figures help to visualize a single bit error. Operation elements: E0, E1,
where E0 represents that there is no error with probability P and E1 represents the
particular error with probability (1− P ).
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• Bit flip:

For bit flip error

E0 =
√
pI =

√
p

[
1 0

0 1

]
(8.1)

E1 =
√

1− PX =
√

1− P

[
0 1

1 0

]
(8.2)

Figure 12: Geometric representation of bit flip error: The contraction is only along
Y - and Z-axes for bit flip error[5]

A point on a Bloch Sphere represents the pure states and any point inside the
sphere represents a mixed state.

So any mixed state is a convex combination of pure states and any state in
the interior is a mixed state. Now here we are applying X-gate, so the error
operation takes the points from outside in any direction except along the X-
axis and maps those insides. Thus this contraction gives a visualisation of this
error.

• Phase flip error:

The phenomena is same as before but this time the contraction of the sphere
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happens except along Z-axis.

E0 =
√
pI =

√
p

[
1 0

0 1.

]
(8.3)

E1 =
√

1− PZ =
√

1− P

[
1 0

0 −1.

]
(8.4)

Figure 13: Geometric representation of phase flip error: The contraction is only along
X- and Y -axes for phase flip error[5]

• Bit-phase flip:

The contraction happens except along Y -axis.

E0 =
√
pI =

√
p

[
1 0

0 1.

]
(8.5)

E1 =
√

1− PY =
√

1− P

[
0 −i
i 0.

]
(8.6)
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Figure 14: Geometric representation of bit-phase flip error: The contraction is only
along X- and Z-axes for bit-phase flip error[5]

• Depolarizing channel:

This is an important quantum noise with probability P that the qubit is de-
polarised and with probability (1 − P ) of no error. We see that for this error
the sphere contracts with the same amount along all axes.

Figure 15: Geometric representation of depolarizing channel: The contraction is
along all axes[5]

A depolarizing channel has the operation elements
(√

1− 3P
4
,
√
P

2
X,
√
P

2
Y,
√
P

2
Z
)
.

Now if we parameterize the channel conveniently and replace 3P/4 by P , then
the state becomes

ε(ρ) = (1− P )ρ+
P

3
(XρX + Y ρY + ZρZ). (8.7)
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9 Mathematics behind quantum error-correction

9.1 The conditions

We need a general framework on what we set up the error-correcting codes, one of
which is Quantum Error Correcting Conditions. To make error-correction possible
one has to satisfy this set of equations.

Figure 16: Block diagram of error detection and correction

• Assumptions:

1. Noise is described by ε

2. Error correction procedure is described by trace-preserving error-correction
operator R

So, for error-correction to be successful

(R ◦ ε)(ρ) ∝ ρ, (9.1)

Where ρ belongs to codeword C. And the sign ‘∝’ would be ‘=’ if ‘ε’ is also
trace-preserving along with the R operator.

• The conditions:

1. Orthogonality:

If there is a codeword |φl〉 which is applied by an error operator El and the
same codeword applied by another error operator Ek, then 〈φl|E†lEk|φl〉 =

0; ∀ l 6= k; ∀ l
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Figure 17: The transformed codewords don’t overlap

If I want to take a subspace of codeword C in a Hilbert space and want to
change it by applying error operators and get codewords C ′ and C ′′, then
C ′ and C ′′ never overlaps because if they overlap then we can’t distinguish
the error from each other and can’t correct it.

2. Non-deformation:

If an error operator acts on a codeword and transforms it to another
codeword then all the vectors inside that codeword would contract with
same probability i.e. Ek, then 〈φl|E†lEl|φl〉 = dkk ∀ l.

Figure 18: The deformation of transformed codeword is not possible

If the error operator does not act on all the vectors with equal probability
in that codeword then there would be a relative shrinking of the subspace
and the shape of the codeword gets deformed. Hence we can’t have a
squared-up Hilbert space, we can’t correct the error.

These two conditions can be written in one equation as

PE†lEkP = dkδlkP, (9.2)

where P are the probability of a qubit to be flipped.
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9.2 Improvement in fidelity (Why QECC is important)

In this section, we take the most general error channel i.e. depolarizing channel to
show that if we apply error-correction code the fidelity improves. It is a mathematical
approach to show that quantum error-correction code works. Before going ahead let’s
make some assumptions, one is that there are independent errors on different qubits
and secondly the noise is sufficiently weak.

Now, we take this example where we see a noisy channel that can be written as the
linear combination of I, X, Z, and iY .

Recall the depolarizing channel on a single qubit,

ε(ρ) = (1− P )ρ+
P

3
(XρX + Y ρY + ZρZ) . (9.3)

Fidelity =
√
〈ψ|ρ|ψ〉 (9.4)

=

√
(1− P ) +

P

3
〈φ|(X|φ〉〈φ|X + Y |φ〉〈φ|Y + Z|φ〉〈φ|Z)|φ〉

=

√
(1− P ) +

P

3
(〈φ|X|φ〉2 + 〈φ|Y |φ〉2 + 〈φ|Z|φ〉2).

If |φ〉 = |0〉

Fidelity =

√
(1− P ) +

P

3
(0 + 0 + 1) (9.5)

=

√
1− 2P

3
.
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If |φ〉 = |1〉

Fidelity =

√
(1− P ) +

P

3
(0 + 0 + 1) (9.6)

=

√
1− 2P

3
.

Therefore,

Fmin(E) =

√
1− 2P

3
= 1− P

3
+O(P 2). (9.7)

Now, let’s encode a single qubit into n-qubit quantum code. Suppose the depolarizing
channel acts independently on each of the qubit

E⊗n(ρ) = (1− p)nρ+
n∑
j=1

3∑
k=1

(1− p)n−1p

3
σjkρσ

j
k + · · · . (9.8)

where ‘J ’ is the number of qubits the gate is acting on and ‘σi’ are the Pauli
matrices X, Y , Z. For 3-qubit, the quantum state after error correction is ρ =

[(1− p)3 + 3p(1− p)2] |φ〉〈φ|+ · · ·

For n-qubit,

ρ = [

(
n

0

)
(1− P )nP 0 +

(
n

1

)
(1− P )n−1P 1]|φ〉〈φ|+ · · · (9.9)

= [(1− p)n + np(1− p)n−1]|φ〉〈φ|+ · · · .
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Therefore fidelity,

FR ≥
√

(1− P )n + np(1− P )n−1 (9.10)

=
√

(1− P )n−1(1− P + np)

= 1−
(
n
2

)
2
P 2 +O(P 3).

Now as we can see from the Eq. (9.7) and Eq. (9.10), it’s clear that after we apply
quantum error codes on a corrupted state, the fidelity improves. Thus QECC is
important [19].

10 Classes of quantum error correction codes

To have an error-corrected qubit, one cannot just have any error-correcting code to
correct a message of a particular dimension by encoding it to a higher dimension. So,
one needs some limitations on the parameters of a code to correct errors efficiently.
A error-correction process can be written as (Z |φi〉 ⊗ |A〉 → |φi〉 ⊗ |AZ〉), where
Z |φi〉 is altered coherent error state, Z is a linear transformation and needs not to
be unitary and A is the ancillary qubit. The same transformation can be written for
superposition states too,Z 2k∑

i=1

ci |ψi〉

⊗ |A〉 7−→
 2k∑

i=1

ci |ψi〉

⊗ |AZ〉 . (10.1)

But the transformation Z → |AZ〉 is to be linear. If the mapping is one-to-one, then
it’s called non-degenerate code, if not then it’s called degenerate code which
is not known in classical codes. Let’s take the 9-qubit Shor’s code for example. In
Shor’s code, we see that the phase errors within a block of 3 qubits act indifferently
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whereas in classical cases, errors on different bits arise from different codewords.

10.1 Classical Hamming Bound

Hamming bound is a type of non-degenerate bound and before looking at quantum
hamming bound, let’s understand it classically first. To do that one must know some
terms regarding this.

• Hamming distance

The number of mismatches between two strings at the same position is called
the Hamming distance.

Let’s take an example of two words ‘work’ and ‘walk’, so at the first and last
positions, both letters are the same i.e. ‘w’ and ‘k’ respectively. In the second
and third positions, the letters are different for the words. So the Hamming
distance between the two words is 2. Likewise, for two strings e.g ‘1001101’ and
‘1111001’ – the Hamming distance is 3 as the binary numbers of the codewords
are different at second, third, and fifth positions. Now, we know that an XOR
gate gives an output ‘1’ if two inputs are different, so we can use an XOR gate
two calculate the Hamming Distance between two codewords – the number of
‘1’s in the output tells you the Hamming Distance.

1 0 0 1 1 0 1
⊕ 1 1 1 1 0 0 1

0 1 1 0 1 0 0
(10.2)

In quantum computation, CNOT gate acts as a classical XOR gate. If the
Hamming distance is zero, then there is no impurity.
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• Hamming Weight

The number of non-zero (i.e. 1 for a binary codeword) digits in a codeword is
called the Hamming Weight of that codeword.

W(111) = 3

W(101101) = 4

• Hamming Bound

Let’s consider, as mentioned before, to detect or correct a code, we generally
map the dimension of a message bit to a higher dimension. A message of ‘k’-bit
if encoded to n-bit, where ‘k’ is less than ‘n’, then the space of the message bit
is a 2k-dimensional subspace of a Hilbert Space of 2n-dimension and we take
the minimum hamming distance between two codewords is 2. The code is thus
called a [n, k, d] code.

Figure 19: Pictorial illustration of Hamming Bound

So the picture above gives a very good illustration of Hamming Bound. The
bigger sphere is a 2n space in which I have my valid codewords. Now I can
make a circle or a sphere around each codeword with radius ‘t’. The physical
significance of this is ‘t’ is the number of maximum errors inside the Hamming
spheres (The smaller spheres). As ‘d’ be the minimum distance between two
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codewords, we can choose 2t < d as no two codewords overlap with each other
for being non-degenerate. But, later, we will see that we choose the ‘t’ as

t =

⌊
d− 1

2

⌋
. (10.3)

Note that, the operator is a ‘Floor function’. Now, the number of ways we can
choose a vector with ‘t’ or less error from the n-dimensional space is(

n

0

)
+

(
n

1

)
+

(
n

2

)
+ ...+

(
n

t

)
, (10.4)

where the first term is the codeword itself and
(
n
i

)
(i ≤ t) represents the number

of ways to choose the vectors which differ from the codeword by ‘i’.

We have total of 2k codewords inside the hamming spheres with error ‘t’ or less
from a 2n Hilbert Space, so the condition is

2k
[(n

0

)
+

(
n

1

)
+

(
n

2

)
+ ...+

(
n

t

)]
≤ 2n. (10.5)

For a (7, 4, 3) Hamming code, the generalised set of parameters is (2r − 1,
2r − r − 1, 3). For r ≥ 2 this code satisfies the hamming bounce, hence can
detect or correct errors efficiently. This is the insight of Hamming bound.

• Perfect Codes

When the number of vectors inside the hamming spheres is equal to the total
number of vectors in the Hilbert space, then it’s called a Perfect Code [20].

2k
[(n

0

)
+

(
n

1

)
+

(
n

2

)
+ ...+

(
n

t

)]
= 2n. (10.6)

– Ex 1.

Let’s take, n = 3, k = 1, d = 3

∴ t =
⌊

3− 1

2

⌋
= 1
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LHS: 21
((
n
0

)
+
(
n
1

))
= 2(1 + 3)8

RHS: 23 = 8

So, LHS = RHS and this is a Perfect Code .

– Ex 2.

Let’s take, n = 4, k = 1, d = 4

∴ t =
⌊

4− 1

2

⌋
= b1.5c = 1

LHS: 21
((
n
0

)
+
(
n
1

))
= 2(1 + 3) = 8

RHS: 24 = 16

So, LHS≤ RHS and this is not a Perfect code despite following Hamming
bound.

10.2 Quantum Hamming Bound

Depending on the framework of classical Hamming Bound, quantum Hamming
Bound was explored. This is a general property of the set of parameters of
a quantum error-correcting code which it has to follow to be efficient for cor-
recting errors. Suppose, ‘n’ is the number of total qubits, ‘k’ is the number of
qubits to be encoded, ‘t’ is the number of maximum qubits with errors that
the code can correct up to and ‘j’ is the number of errors (j ≤ t). So, from
the total number of qubits, there are

(
n
j

)
sets of locations where the errors can

occur. Now, there are three types of basic errors that can happen on quantum
bits i.e. bit-flip, phase-flip, and bit-phase flip. The total number of error on ‘t’
or fewer qubits

t∑
j=0

(
n

j

)
3j. (10.7)
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As seen before, the message is in the 2k-dimensional subspace of a 2n-dimensional
Hilbert Space. So the condition must be

t∑
j=0

(
n

j

)
3j2k ≤ 2n. (10.8)

This is called Quantum Hamming Bound. So there is no non-degenerate code
that encodes ‘k’ qubits in fewer than ‘n’ qubits to protect all errors on a ‘t’
number of qubits.

Now like the Hamming bound we have some other bounds like Singleton bound,
Gilbert-Varshamov bound, etc. that basically completes the theoretical base depend-
ing upon which we can go forward to some actual codes in order to detect and correct
errors. Here in this section we will see how to construct a quantum error-correction
code called Calderbank-Shor-Steane (CSS) codes but on the classical framework. For
that we see the construction of Classical linear code [16].

10.3 Classical linear codes

• Generator matrix:

This matrix is an operator that projects binary message bits to higher-dimensional
space. If that projects a k-dimensional binary message bit to an n-dimensional
space then the matrix will be (k × n)-dimensional. A couple of examples will
make this thing clearer.

For repetition code, we project 1-dimensional message bit (0 or 1) to a 3-
dimensional space (000 or 111). So the generator matrix will be (1 × 3)-
dimensional. And in this case the generator matrix is G = [111]. So the
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transformation follows

[0][111] = [000] (10.9)

[1][111] = [111].

Now, another popular quantum code is (7, 4) Hamming code, where the gen-
erator matrix projects a 4-dimensional message bit to a 7-dimensional encoded
bit. The (n - k) bits are made following the conditions

x = a⊕ b⊕ d (10.10)

y = a⊕ c⊕ d

z = b⊕ c⊕ d.

Now from 7 bits, we can have 27 = 128 total number of codewords among which
only 16 are valid codewords that follow the above equations. So the generator
matrix for a (7, 4) Hamming code can be constructed as

Generator matrix of Hamming code

‘G’ is called the Generator Matrix.

Now, let’s have a look at some of the properties of linear codes

1. All zeroes are always a valid codeword
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2. The sum of two valid codewords is also a valid codeword.

If C = C1 +C2, and C1, C2 are two valid codewords, then C is also a valid
codeword.

3. Hamming weight of a codeword C is basically the Hamming distance of
all zeroes and the codeword C

Ex. D(C, 00000) = W (C), where C is a 5-dimensional codeword.

4. Smallest Hamming distance is the minimum weight of the valid codewords
among all valid codewords in the code

Now, why do we need those properties? To understand that first, let’s have a
look at the pictorial representation of minimum hamming distances for different
codes.

Figure 20: Geometrical representation of (3,1) repetition code

This is for (1, 3) repetition code. Where the two valid codewords are (000) and
(111), and how we can go from one valid codeword to another valid codeword
– that is by 3 steps. So the hamming distance of (1, 3) repetition code is 3.

For a 4-dimensional code, assume that we have a generator matrix

G =

[
1 1 0 0

0 0 1 1

]
. (10.11)

So, we have the codewords of the message bits as 00 → 0000, 01 → 0011,
10→ 1100 and 11→ 1111. The pictorial representation of this is as follows
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Figure 21: Geometrical representation of a code with Hamming distance 2

So, again, here to go from one valid codeword to another we have to go two
steps. So the hamming distance of this code is 2.

But, for (7, 4) hamming code or any other higher dimensional code, the draw-
ings become so hard to digest and also comparing each codeword to calculate
minimum Hamming distance becomes tedious. So here comes the importance
of the properties of Linear codes. As the 4th property tells that the hamming
distance is just the minimum weight of all the valid codewords in the code,
then the hamming distance of the (7, 4) hamming code is 3.
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Message Codeword
0000 0000000
0001 0001111
0010 0010011
0011 0011100
0100 0100101
0101 0101010
0110 0110110
0111 0111001
1000 1000110
1001 1001001
1010 1010101
1011 1011010
1100 1100011
1101 1101100
1110 1110000
1111 1111111

Table 2: Codewords with minimum Hamming weight 3 in (7, 3) Hamming Code

The grey-colored cells are the ones that have the codewords with a minimum
weight of 3, so the minimum distance of the code is 3.

Now, why are we so obsessed with minimum Hamming distance? Because this
is needed to calculate the number of errors a code can detect or correct. The
following table makes this clear.
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Figure 22: Pictorial illustration of Hamming Bound
https://www.youtube.com/watch?v=as_mNSx6OG8&t=335s

As we can see above, the blue circles depict the valid codewords ad the white
ones replicate the codewords with errors. For minimum distance 1, there is
no way to detect or correct any error because any error to this moves the
information from one valid codeword to another. For minimum distance 2,
we can detect one error but as we can tell from which way it comes from i.e.
we can’t tell from which valid codeword the error comes into existence, so we
can’t correct it. For minimum distance 3, we can detect two errors and correct
1 error as this time we can tell which error has occurred from which valid
codeword, we just inverse that to correct. For minimum distance 4, obviously,
we can detect three errors but correct only 1 as we can’t tell from which valid
codeword the error of the middle white circle comes and so on. In general for
minimum distance ‘d’, we can detect (d−1) number of errors and floored value
of d−1

2
.

• Transmission efficiency

Transmission efficiency of a code is defined by Message bits(k)
Total bits(n) .

For (1,3) repetition code, minimum distance d is 3, so it can correct b3−1
2
c = 1.
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Likewise, for (3,5) and (4,7) repetition codes one can correct 2 and 3 errors but
as one increases the encoded codes the transmission efficiency decreases.

(1,3) repetition code→ 1

3
= 0.33 (10.12)

(3,5) repetition code→ 1

5
= 0.20

(4,7) repetition code→ 1

7
= 0.14.

So, in general, repetition code is not a very good code for correcting errors.
On the other hand, for (4,7) hamming code, one can correct only one error but
with a transmission efficiency of 0.57, which is much more efficient.

• Parity check matrix

The linear code is more efficient and lesser time-consuming in case of error
correction. In this code, we use a matrix called ‘Parity Check Matrix’ H,
which is a (n− k)×n dimension matrix. Every code has a parity check matrix
H, for which the valid codewords in that code follow the condition HCT = 0,
otherwise, that will be an invalid codeword.

To construct a parity check matrix (say) for (7,4) Hamming code, we follow
Eq. (10.10), if we take the LHS to RHS we have

x⊕ a⊕ b⊕ d = 0 (10.13)

y ⊕ a⊕ c⊕ d = 0

z ⊕ b⊕ c⊕ d = 0.

Now taking all the coefficients we can make a matrix

H =

1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1

 . (10.14)
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This is the Parity Check matrix for (7,4) Hamming code. To check if a codeword
is valid or not, we just have to take the transpose of the codeword and operate
the H on the codeword. If we get zero then the codeword is a valid codeword
for Hamming code.

Let, ~e is an error on the codeword ~C. Now, H(~C + ~e)T = H ~CT +H~eT = H~eT .
So we get the syndrome vector for the corrupted bit. This syndrome vector,
only, depends on the error, not on the codeword. So, we exactly can know
what we need to fix irrespective of codeword. In the above methods, we have
to look at all the code vectors to check where the error has occurred and that
is time-consuming as (~C +~e)T are 2n numbers of vectors. Instead here, as this
depends only on the error vector, we have only 2n−k error vectors to look at.
On the other hand, it can only correct one error in a codeword. We can also
get the minimum Hamming distance and generator matrix for a code. So the
concept of the Parity check matrix is very important.

10.4 CSS code (Calderbank-shor-Stean codes)

Based on some properties and results of Classical Linear Codes CSS codes is one of
the first large class quantum error correction code. Suppose, C is an [n,k] code which
has the generator matrix G and parity check matrix H, then its dual code C⊥ will
have the generator matrix GT and parity check matrix HT . If x are the codewords
of code C and y are the codewords of code C⊥, then x and y are orthogonal to each
other. Dual code is the main feature in the construction of CSS code.

To see how CSS codes work, we need to know two facts. First,
∑

b∈C(−1)a·b = |C|
if a ∈ C⊥ and

∑
b∈C(−1)a·b = 0 if a /∈ C⊥ and secondly, phase flip error in Z basis

is just analogous to bit flip in Hadamard basis. Suppose C1 is [n, k1] code, C2 is [n,
k2] code and C2 ⊂ C1. C1 and C⊥2 both correct ‘t’ errors. Now assume x ∈ C1 and
a′ ∈ C1 such that a−a′ ∈ C2. So, |a+ C2〉 = |a′ + C2〉. Quantum code CSS (C1, C2)
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is defined to be a vector space spanned by the states |a+ C2〉 ∀a ∈ C1. The number
of cosets of C2 in C1 is |C1|/|C2|, whose dimension is 2k1−k2 . So CSS is a [n, k1− k2]
quantum code.

We define the quantum state by

|a+ C2〉 ≡
1√
|C2|

∑
b∈C2

|a+ b〉. (10.15)

After e1 it flip error and e2 phase flip error the quantum state becomes

1√
|C2|

∑
y∈C2

(−1)(a+b)·e2 |a+ b+ e1〉 . (10.16)

Now, to detect the bit flip error e1 we use an ancillary state |0〉 and apply parity
check matrix H1

|a+ b+ e1〉 |0〉 (10.17)

= |a+ b+ e1〉 |H1 (a+ b+ e1)〉

= |a+ b+ e〉 |H1e1〉 [∵ x ∈ C1, y ∈ C2, H1a = H1b = 0].

Where |H1e1〉 is the syndrome qubit, And the final state will be

1√
|C2|

∑
y∈C2

(−1)(a+b)·e2 |a+ b+ e1〉 |H1e1〉 . (10.18)

Now, measuring the syndrome qubit, from the syndrome vector we can know the
error and then using NOT gate we correct the error.

1√
|C2|

∑
y∈C2

(−1)(a+b)·e2 |a+ b+ e1〉 . (10.19)

To detect phase flip error we recall the second fact and apply Hadamard gate to each
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qubit

H⊗
( 1√
|C2|

∑
y∈C2

(−1)(a+b)·e2 |a+ b+ e1〉
)

(10.20)

=
1√
|C2| 2n

∑
z

∑
y∈C2

(−1)(a+b)·(e2+z)|z〉. (10.21)

where, z = z + e2

1√
|C2| 2n

∑
z′

∑
b∈C2

(−1)(a+b)·z′ |z′ + e2〉 . (10.22)

e2 comes inside the ket from the phase factor, so the phase flip error now becomes
a bit flip error. From the first fact we know

∑
z′∈C2

(−1)y·z
′

= |C2| = 2k2 if z′ ∈ C⊥2
and

∑
z′∈C2

(−1)y·z
′
= 0 if x /∈ C⊥.√

|C2|
2n

∑
z′∈C⊥2

(−1)a·z
′ |z′ + e2〉 . (10.23)

Now doing the same as detecting the bit flip error (i.e. using an ancillary qubit and
applying parity check matrix H2)

|C2|√
2n/

∑
z′∈C⊥2

(−1)a·z
′ |z′ + e2〉 |H2e2〉 . (10.24)

Applying NOT gate we get

|C2|√
2n/

∑
z′∈C⊥2

(−1)a·z
′ |z′〉 . (10.25)
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For correcting the error we apply the Hadamard gate to each gate again

1√
|C2|

∑
b∈C2

|a+ b〉. (10.26)

So, using CSS code we can correct the phase flip and bit-flip error.

11 Spin lattice models

After some basics of Quantum Error-Correcting Codes, now the approaches to study-
ing these errors are needed. The tensor Network-based approach is seen to be more
efficient to study the real error models in quantum circuits. Before starting with the
Tensor Networks, let’s first visualize the model on which a tensor can be defined.

Figure 23: Spin lattice model on 2D grid

Let’s consider a lattice with spins on its vertices. The state of those N -dimensional
particles is described on the Hilbert space (Cd)⊗N . For a two dimensional lattice
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where the Hamiltonians are local, the energies of the particles can be written as

E(S1, S2, ....) =
∑
<xy>

Sx.Sy. (11.1)

where x and y are the labels of the sites where the particles reside.Sx.Sy is the energy
of a particle on ‘xy’ site and E is the total energy of all the particles. Now we can
define each vertex as a Tensor T with four legs Sa, Sb, Sc, Sd. And the interpretation
of the tensor is that it computes the local energies associated with the legs living on
the vertices. The same model can be made in case of a 1D chain where each vertex
will have two legs instead of four.

12 Tensor Networks

There are a few concepts and terms which we have to understand before we dig into
the concept of TNs and DMRG calculation for the ground state of a many-body
quantum system.

12.1 Single Value Decomposition (SVD)

This is a matrix factorising method. Let, M be any complex m × n matrix with
n ≥ m (If n < m, then SVD will be done on M †).

Then there exists u(m×m), D(m× n) and v(m× n) such that M = uDv, where D
is a diagonal matrix with Dii ≥ 0, u is a unitary matrix and v is orthonormal.
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12.2 Smidth Decomposition

The Schmidt decomposition is a way of expressing a vector as the tensor product
of two inner product spaces. If there is a two-qubit pure state |ψ〉 such that |ψ〉 ∈
HA ⊗HB, then ∃ |ai〉 ∈ HA and |bi〉 ∈ HB such that

|ψ〉AB =
N∑
i=1

λi |ai〉 ⊗ |bi〉 , (12.1)

where

N∑
i=1

λ2
i = 1. (12.2)

λ is called the Schmidth coefficient and |ai〉, |bi〉 are the Schmidth bases. Schmidth
Decomposition can be used to calculate the entaglement which is very crucial in
DMRG calculation for many-body system.

A density matrix of the state ψ, thus, can be written as

ρ = |ψ〉AB 〈ψ|AB =
( N∑
i=1

λi |ai〉 ⊗ |bi〉
)( N∑

j=1

λj 〈aj| ⊗ 〈bj|
)

(12.3)

=
∑
i,j

λiλj

(
|ai〉 ⊗ |bi〉

)(
〈aj| ⊗ 〈bj|

)
.

And the Partial Trace is the process to extract the information of a subsystem
from a multipartite quantum state and for a bipartite system it can be written
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as ρA = TrB(ρ) and ρB = TrA(ρ).

ρA = TrB(ρ) (12.4)

=
∑
i,j

λiλj

(
|ai〉 〈aj|

)
Tr
(
|bj〉 〈bj|

)
=
∑
i,j

λiλj

(
|ai〉 〈aj|

)(
〈bj| |bj〉

)
=
∑
i

λ2
i |ai〉 〈ai| .

So, Partial trace of subsystem A of the state |ψ〉AB is defined as ρA =
∑

i λ
2
i |ai〉 〈ai|

and similarly Partial Trace of subsystem B can be written as ρB =
∑

i λ
2
i |bi〉 〈bi|.

If, λi 6= 0, then it’ll be a Separable state if λi = 1 and an Entangled state if λi > 1.
So, Schmidt Decomposition can be useful to know the entanglement of a state.

12.3 Tensor Network Notations

Tensor Networks are a very useful technique to work with tensors with many indices.
It is a visualised representation of multi-linear mapping between two vector spaces.
These tensor networks contract high-order tensors into a low-order tensor and thus
making the computations like summation, inner and outer products of two N -indices
tensors.
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Figure 24: Basic notations for Tensor Networks

Here, the first figure having no leg (or index) is the visual representation of a Scalar
quantity, the second figure has one index and is the representation of a Vector (vi),
the third figure has two indices and is known as Matrix (Mij) and the fourth figure
has three indices and is known as Tensor (Tijk).

Figure 25: Some other notations for Tensor Networks

Here the first figure is representing a tensor contraction of two tensors with two in-
dices (Vector) and three indices (Matrix) respectively (The operation can be realized
as MijNikl = Tjkl, ‘i′ index is contracted here). In the next figure matrix multiplica-

59



tion is depicted (uijvik = Ujk) and the last figure is the representation of trace of a
matrix i.e. if two matrices are assumed to be A and B then this represents Tr(AB).

Figure 26: Singular Value Decomposition

12.4 Tensor Networks in Many-Body Quantum System

In Mean Field Theory, we neglect the concept of Entanglement. That’s the old way
of Condensed Matter Physics being able to describe most of the systems as they are
in high temperature where entanglement becomes less important. But we are very
much interested in lower temperature because we are to calculate the the ground
state energy of a quantum system. And at lower temperature entanglement plays a
very crucial role.

r r r r r r r p p p p r r r︸ ︷︷ ︸
(Cd)⊗N

The basis state of a system can be written as |i1〉, where i1 = 0, 1, 2, ....., d− 1. The
basis set of the total system is |i1, i2, i3, ...., iN〉 and ik = 0, 1, 2, ......, d−1. In general,
one can write the state as

|ψ〉 =
∑

Ci1,i2,...,iN |i1, i2, ..., iN〉 . (12.5)

60



The interaction can be between any two spins but we are more interested in local
and strong interactions rather than long and weak interactions. This allows us to
study the system from the point of view of entanglement.

Now, we will talk about Quantum matter. But the behavior of quantum matter is not
the same as that of conventional matter, as discussed, from the angle of entanglement
and interaction. For example, the Hamiltonian of an Ising model in a magnetic field
is

H = −
∑
i

σzi σ
z
i+1 + h

∑
i

σxi , (12.6)

where the first term indicates the Ising interaction (All spins up or all spins down)
h is the strength of the magnetic field and second term aligns them along x axis.
When h << 1, it breaks symmetry and it respects symmetry when h >> 1. For this,
we measure local order parameter 1

N

∑
i σ

z
i to know which phase we are in.

In case of Quantum matter, it doesn’t follow the framework of the conventional
matter as it includes entanglement. We are interested in the ground state as from
this we can get the information of the excited states from the ground state as at
low-temperature Ground State is most quantum in nature and gapped. The most
significant feature of entanglement is that the entropy depends on the dimension
of the boundary of the system rather than the volume. This feature enables us to
perform DMRG calculations to calculate the energy of the ground state. We will
discuss this feature called ‘Area law’ and DMRG calculation in detail.

Talking about the symmetry, due to the Monogamy of Entanglement we can’t
have the same entanglement between any two sites, in the picture above, the entan-
glements between sites 1, 2 and sites 3, 4 are not the same. So, it does not respect
the translation symmetry. But we want every cut to behave in same manner. To
avoid the asymmetry, let’s represent it in such a way that one particle is divided into
two sub-particles as below.
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Figure 27: Mapping of two particles to one particle to keep the translation symmetry

If we consider the black particles with dimension d in the place of two blue particles
with dimension D such that PS : CD ⊗ CD ≈ Cd; (S = 0, 1, 2, 3, ....), where P are
the linear map that ensures the effective particle (The black particles) is our actual
particle, then if we, now, cut anywhere the symmetry remains same. If the sites
are the same then for each site the linear map P is the same, otherwise, it’ll be
site-dependent.

To maintain translation-invariant property, we can follow two conditions -

1. Open Boundary Condition:

Here, the boundaries are open, where the map P acts as P : CD ≈ Cd and the
maps inside act as mentioned above.

2. Closed Boundary Condition:

Here the particles in the edges are entangled with each other making a closed
chain-like structure.

|ψ〉 =
[
P

(1)
1a1b ⊗ P

(2)
2a2b ⊗ P

(1)
3a3b....⊗ P

(n)
]
|ω〉⊗N , (12.7)

where

|ω〉 =
1√
D

D∑
i=1

|i, i〉 . (12.8)
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Here, P i
iaib

is the map that takes two auxiliary particles ia and ib into ith particle
and ω is called the ‘Matrix Product State’ which is a maximally entangled state.

Now we can write the state in two following ways

|ψ〉 =
[
P (1) ⊗ P (2) ⊗ P (1)....⊗ P (n)

]
|ω〉⊗N . (12.9)

|ψ〉 =
∑

Ci1,i2..,iN |i1, i2.., iN〉 . (12.10)

And we have to see what is the interpretation of the coefficient Ci1,i2..,iN .

Let’s say, a projection operator P (S) which projects particles α, β to particle i
can be written as below

P (S) =
∑

α,β=1,..,Di=1,...,D

A
(S),i
α,β |i〉 〈α, β| . (12.11)

Then for two sets of particles α, β, γ, δ (β and γ particles are entangled) which
are mapped to i1 and i2 pairwise can be written as follows

P (1) ⊗ P (2) |ω1,2〉 =
( ∑
α,β,γ,δ,i1,i2

A
(1),i1
α,β |i1〉 〈α, β| ⊗ A

(2),i2
γ,δ |i2〉 〈γ, δ|

)
(12.12)

( 1√
D

D∑
k=1

|k, k〉
)

=
∑

α,β,δ,i1,i2

A
(1),i1
α,β |i1〉 〈α| ⊗ A

(2),i2
β,δ |i2〉 〈δ|

=
∑

α,δ,i1,i2

∑
β

A
(1),i1
α,β A

(2),i2
β,δ |i1i2〉 〈αδ|

=
∑

α,δ,i1,i2

(
A(1),i1A(2),i2

)
α,δ
|i1i2〉 〈αδ| .

Here,
(
A(1),i1A(2),i2

)
is the matrix product of two operators. So, the coefficients
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can be interpreted as the ‘Matrix Product state’ (MPS) of the operators.

Similarly,

P (1)⊗P (2)⊗P (3) |ω1,2〉 =
∑

α,δ,i1,i2

(
A(1),i1A(2),i2A(3),i3

)
α,β
|i1i2i3〉 〈αβ| . (12.13)

13 Density Matrix Renormalization Group (DMRG)

For many-body systems and weak interaction, we use DFT (Density Function The-
ory), DMFT (Dynamical Mean-Feild Theory), etc. On the other hand, for strongly
interacting systems where entanglement takes an important role we use DMRG (Den-
sity Matrix Renormalization Group) calculation to find the ground state energy of a
Hamiltonian.

13.1 Review of making the Hamiltonian matrix for few spin

system

We know the Pauli matrices can be written as

σx =

(
0 1

1 0

)

σy =

(
0 −i
i 0

)

σz =

(
1 0

0 −1

)
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In a two-spin system, the total spin can be written as ~STotal = ~S1+ ~S2, where S1 is the
spin angular momentum of the first particle and S2 is the spin angular momentum
of the second particle.

S2
Total = STotal.STotal (13.1)

= (~S1 + ~S2).(~S1 + ~S2)

= S2
1 + S2

2 + 2~S1.~S2.

With the properties of spin angular momentum we get the solution of the above
equation as

~S1. ~S2 =
1

2

[
S(S + 1)− 3

2

]
. (13.2)

Now, after some lines of algebra, we can write Eq. (13.2) in terms of the adder (S+)
and ladder (S−) operators as

~S1. ~S2 = ~S1z.~S2z +
1

2

(
S+

1 S
−
2 + S−1 S

+
2

)
. (13.3)

From Heisenberg model H = J
∑

i 6=j
~Si.~Sj, we can write the Hamiltonian of the

two-spin system as
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H = J


1
4

0 0 0

0 −1
4

1
2

0

0 1
2
−1

4
0

0 0 0 1
4

,

where J is called ‘Exchange constant’.

Likewise, for a three-spin system, the hamiltonian will be an 8× 8 matrix

H = J.



2 ∗ 1/4 0 0 0 0 0 0 0

0 0 1/2 0 0 0 0 0

0 1/2 −2 ∗ 1/4 0 1/2 0 0 0

0 0 0 0 0 1/2 0 0

0 0 1/2 0 0 0 0 0

0 0 0 1/2 0 −2 ∗ 1/4 1/2 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 ∗ 1/4


.

So as we can see for n-qubit system, the hamiltonian matrix is of n× n dimension.
If n is very large, then it becomes very hard to diagonalize and calculate the ground
state energy. Instead, we take a block for which [H,SzTotal] = 0. This is a huge help,
making the problem of the order of O(2N/N) from O(2N). For example, in this case
for N = 3, we can take the block,

Hblock = J

0 1
2

0
1
2
−1

2
1
2

0 1
2

0

.

We can now diagonalize it and minimum eigenvalue will be the the Ground state
energy. Here, Egr = −J and corresponding eigenstate is

66



|ψ〉 = 1√
6

 1

−2

1

.

13.2 Area Law

Area law is something based on which DMRG calculation is possible. The main goal
of the calculations in many-body physics is to optimally reduce unnecessary degrees
of freedom so that the order of the problem gets reduced. For that, we don’t need
to look at the whole Hilbert space of the system at once. Instead, we work with the
entanglements corresponding to the ground state.

Let’s take a one-dimensional spin chain which is in |ψ〉 state. We have to make
the Schmidth Decomposition of the system wavefunction by dividing it into two
subsystems |L〉 and |R〉 i.e. |ψ〉 =

∑
λi |L〉 |R〉.

Figure 28: Schmidth decomposition of 1D spin-chain into left-right subsystems

With the number of particles, the entropy of the system should change, but in reality,
it remains almost the same. Rather we see an alternation of the entropy value. The
maximum entropy of a chain grows like Smax = N

2
ln2. Except for the case N=2,

where it has the maximum entropy i.e. 0.69. Why? The entanglement resides
between a particle in left site |L〉 and one in right site |R〉. If the cut is through two
entangled particles, then the entanglement of the chain becomes higher otherwise it
remains low.

So, for N=2, the cut is through the pair, for the case N=4 also, the cut is through
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(a) Higher Entanglement
when N=2

(b) Lower Entanglement
when N=4

(c) Higher Entanglement
when N=6

Figure 29: Variation of entanglement depending on the number of particles

the pair, so for these two cases the entanglement entropy is high but as the cut is only
one, not through each entangled pair, so for N=2 only, the entanglement entropy is
maximum but that is not the case for N=4 or any other cases. On the other hand,
for the case N=3, the cut is not through an entangled pair, the entropy is much
lower. So, there’s an alternation of high and low values. So as we can see here, the
entropy is actually depending on the cut or in the broader sense of the boundary.
As it turns out, this very special property of entanglement entropy comes from black
hole physics. In black hole physics, the entropy is proportional to the surface of the
black hole, not to the volume. In the context of many-body physics, the entropy is
proportional to the boundary of the system, this is called the Area Law. For a 1D
system, it’s actually constant as the boundaries of the system are the points, for a
2D system the area is equivalent to its length, and for a 3D system, it’s the surface
area.

Figure 30: The cut through the entanglement between two subsystems
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There is no entanglement between two sites unless a singlet bond is cut. The more
the number of cuts, the higher the entropy. Area law makes DMRG work. it allows
truncating states with lower probability

2N/2∑
i=1

λ2
i |i〉L |i〉R →

m∑
i=1

λ2
i |i〉L |i〉R . (13.4)

This is an exponential reduction. This is the same as we did for the Hamiltonian
matrix in the previous section.

13.3 Procedure of DMRG

In the initial step, each site contains only one particle. This is solved by diagonalizing
the Hamiltonian. Then one particle is added to each site in each iteration. So, each
site grows like 2, 3, etc. and at each step the Hamiltonian is diagonalized. As there’s
exponential growth for each particle in a site, we truncate the block at D-dimension
if the block is too big.

The set of left block+two particles+right block is called the superblock, which is
in the Hilbert subspace of the whole system. The ground state energy candidate
is found by calculating the reduced density matrix for one sub-block. At first, the
approximated energy state is far away from the actual value. But with the number
of sweeps, the values get improved and the site is updated. Once one block reaches
the maximum size, the procedure goes with the second block. And after sweeps of
calculations we get the approximated ground value depending on the error value we
set.
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Figure 31: The energy trend of the Rydberg atoms lattice under dipole-dipole inter-
action

The above diagram represents the iDMRG algorithm (Infinite DMRG). Up to a
nominal number of sites, we don’t need to truncate any state as we can comfortably
do the calculation when the system size is small. Instead looking at the whole Hilbert
Space all together, the algorithm starts with very small sub-space with 4-6 sites and
then divide it into two subsystems by performing Schmidth decomposition. Then we
slowly grow the system by adding one site each to the subsystems and normalize the
energy for each step and repeat this step until it gets bigger and then we perform
DMRG algorithm.
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Figure 32: DMRG algorithm diagram

After iDMRG, then we start to truncate the states with lower probability or lower
Schmidth eigenvalues. To do that we start right from the middle and then run SVD
(Single Value Decomposition) which is equivalent to diagonalize the Hamiltonian
for the considered system. We go left making the growth of right subsystem and
with each shift we perform the SVD or the diagonalisation of the Hamiltonian and
calculate the reduced density matrix of the subsystem. Same procedure will be
followed for the left subsystem. The whole step completes one sweep and take out
the minimum energy from this. With every sweep the minimum energy gets improved
and after some sweeps it provides a well approximated energy value of the system.
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14 Rydberg Atoms

The study of Rydberg atoms took a crucial role in developing quantum mechanics.
To understand the atom-light interaction Rydberg atoms were uses as an ideal test-
bed because of their strong interaction with electromagnetic fields and this inspired
the birth of cavity quantum electrodynamics. In the stage of 1970s, the interactions
among these atoms did not take any important rule. At the end of 1990, this becomes
of huge interest when the progress of laser cooling of atoms allowed for the realisation
of frozen Rydberg atoms. The strong interactions between these atoms can be used
to make quantum gates. Rydberg atom is a very good candidate for the future
quantum computer to establish a long-range entanglement due to strong interactions
with highly coherent operations and flexible geometry and higher lifetime.

An atom can be regarded as a Rydberg atom if the outermost electron is in a very high
principal quantum number. Using the Hydrogen model we can study the Rydberg
state of any atom up to a good approximation as the principal quantum number is
pretty high (n ≥ 10).

Figure 33: Rydberg
state of an atom
where the last princi-
ple quantum number
is very high

The expectation value of radius of an electron is given by

< r >= n2a0

[
1 +

1

2

(
1− l(l + 1)

n2

)]
, (14.1)

where ‘n’ is the principal quantum number, ‘a0’ is the Bohr
radius and ‘l’ is the azimuthal quantum number.

Now we know the wavefunction of hydrogen atom i.e.

Ψnlm =
1

r
ρl+1 exp−ρ v(ρ)Ylm(θ, φ). (14.2)

v(ρ) =Polynomial of degree n− l − 1, ρ = r/a0n
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The probability of finding the electron in the range r to r+dr

is P (r) = |Rnl|2r2, where Rnl = 1
r
ρl+1 exp−ρ v(ρ)

After some lines of substitutions we get

Rnl ∼ rl(a0 + a1r + ...+ anr
n−l−1) (14.3)

= rn−1er/na0 .

As the radius is assumed to be large we ignore all terms of the polynomial (v(ρ) ∼
a0 + a1r + ...+ anr

n−l−1) except the highest degree term.

In astrophysical objects in the recombination process, protons are seen to be captur-
ing electrons from very high quantum numbers e.g. n = 350. For that, the radius
becomes r = 0.53 × 10−10 × 3502 = 6.5µm, which is not quantum anymore, rather
it is in semi-classical regime. In normal atoms e.g. from nf = 5 to ni = 1, it takes
1/107 seconds whereas Rydberg atoms take much more time to decay, sometimes 1
second, as there is an enormous number of states in between.

15 Application of DMRG calculation to Rydberg

atoms interaction

In this section, we use the DMRG method to calculate the Ground State Energy of
Rydberg atoms under strong dipole-dipole interactions for the XY spin model. The
atoms excited to Rydberg atoms possess a large electric dipole moment which leads
to strong dipole-dipole interactions between the atoms.

XY spin model is the limiting case of the Heisenberg spin model. In this model, the
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spins are less coupled in z-direction than in x and y -directions. In the other case,
it’s called the Ising model. Here, we consider the case where the atoms are in two
different Rydberg states and are dipole coupled. In the spin-1

2
system, states |↑〉 and

|↓〉 are separated by transition frequency typically in GHz range. The interaction
potential scales like C3

R3 . And the total Hamiltonian looks like [8]

H =
~Ωxy

2

∑
i

σix −
~δxy

2

∑
i

σiz +
∑
i 6=j

C3

R3
ij

(
σi+σ

j
− + σi−σ

j
+

)
, (15.1)

where Ωxy is the Rabi frequency and δxy is the detuning of microwave field and σs
are the Pauli Matrices.

15.1 Application Process

Using the ITensor package in Julia, I have calculated the Ground State energy of
this Hamiltonian in the 2D lattice of Rydberg atoms under this strong interaction.
ITensor, short form of intelligent tensor package is a software library that is made
to enable users to write code for the tensor notations without thinking much about
the ordering of the indices. It also enables users to implement high-level algorithms
like DMRG (The one I use here). In this process, I calculate the ground state energy
for the 2-dimensional system consisting of 1 to 10 Rydberg atoms in each dimension
(X and Y ). I consider the system taking each and every combination of numbers of
particles from 1 to 10 i.e. from 1× 1 lattice to 10× 10 lattice.
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Figure 34: The energy trend of the rydberg atoms lattice under dipole-dipole inter-
action

The energy values are negative. As one can easily see the trend of the ground energy
levels of the system. The more Rydberg particles in the system the lesser value of
energy level and it’s almost symmetric which is expected. The details of the code
(and the explanation) are given in appendix A below.
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16 Tensor Network Contraction Application to Er-

ror Correction

16.1 Hypergraphs

Figure 35: Graph

Here in this picture, A, B, C are called Vertices and K1, K2 are called Edges. This
is a Normal Graph, where the edges are of size 2. This is denoted as G(V,E), where
V = [A,B,C] are the vertices and E = [K1, K2] = [(A,B), (B,C)] are the edges.
Hypergraph is something where the size of the edges is equal or more than 2. It is
denoted as H(V,E)
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Figure 36: Hypergraph

Here, V = [A,B,C,D,E, F ], E = [K1, K2, K3] = [(A,B,C), (C,D), (E,A, F )]. Ten-
sor networks can be represented as hypergraphs where the vertex represents a tensor
and each hyperedge is tensor-index. If not mentioned, we take it as 2. When the
edges are closed, it’s a scalar.

Figure 37: A representation of Tensor contraction

In the above figure, a tensor contraction is represented. Tensor Tb =
∑

a,b,c,dAacBabdCcdeDbc

is contracted by hyperedges a, b, c, d. Only one open hyperedge is e. So, V =

[A,B,C,D] and E = [a, b, c, d, e] = [(A,B), (B,D), (A,C,D), (B,C), (C)] and this
is a hypergraph H = [V,E]. In the context of quantum computation, it is a common
occurrence that the dimension of each edge is 2 representing the two states of a qubit.

77



16.2 Parallel Tensor Network Contraction Algorithm

Tensor Network contraction is a common way to evaluate a tensor network which
works by repeatedly eliminating closed edges and combining adjacent nodes until
only a single node with open edges is left.

A tensor network G′ = (V ′, E ′) is a sub-network of another network G(V,E) iff
V ′ ⊆ V , E ′ = [e ∩ V ′|e ∈ E] i.e. G′ contains all edges of G associated with atleast
one vertex in V ′ and all closed edges of G′ are closed edges of G that falls inside V ′.

In a Tensor Network G, any sub-network H with n vertices can be contracted to
create a new Tensor Network G′ with (n− 1) fewer vertices than G.

Now, we know if there are more than one same set of indices then we can contract
those indices and in a different way to get the same result. Let’s take the above
example where the same set of indices are a, b, c, d, and the tensor can be contracted
in different ways. The work is to find the optimized order of Tensor contraction for
which the cost is minimum. [9]

(a) Tbe = AacBabdCcdeDbc

(b) Tbe = SbcdCcdeDbc

(Contracting A and B) (c) Tbe = AaBabdCdeDb

Figure 38: Ordering of contraction with respect to index a

Here, Aac and Babd are contracted with respect to the index a. So, Sbcd = AacBabd.
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(a) Tbe = AacBabdCcdeDbc

(b) Tbe = AacSacdCcde
(Contracting B and D) (c) Tbe = AaBabdCdeDb

Figure 39: Ordering of contraction with respect to index b

Here, Babd and Dbc are contracted with respect to the index b. So, Sacd = BabdDbc.

(a) Tbe = AacBabdCcdeDbc

(b) Tbe = AacSabceDbc

(Contracting B and C) (c) Tbe = AacBabdCcdeDbe

Figure 40: Ordering of contraction with respect to index d

Here, Babd and Ccde are contracted with respect to the index d. So, Sabce = BabdCcde.

16.3 Application to Quantum Error Correction

In this section, we will study how Tensor Network is useful for studying Quantum
Error Correction codes based on this paper. Quantum Error Correction is a very
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useful method for a scalable fault-tolerant quantum computer. Though it needs so
many qubits to actually make one logical qubit and that is still some steps away in
the future. But still, it’s important to be studied theoretically and experimentally.
This is the only way by which we can achieve the Quantum Supremacy. Now, existing
error models provide only a rough approximation of the logical error rates. On the
other hand, realistic error models would have a better approximation of the errors.

The study is done focusing the crosstalk error model on surface code, specifically the
Surface-17 code.

16.3.1 Introduction

• Fault Tolerant Quantum Computer

Even though the environment plays a great role to have errors on qubits, and
that is one of the bars to achieve what we call the Quantum Supremacy, still
we can think of a quantum computer that can perform pretty well. Arbitrary
good computation can be done even with faulty logic gates given that the error
probability is below a certain constant threshold.

Performing error correction periodically is not sufficient to prevent the build-up
of errors, because -

1. The encoded gates can also cause error to propagate.

Figure 41: Propagation of error via a perfect CNOT gate

As you can see above though the gate is error-free, but the operation
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makes the error propagate. Let, CNOT ∼ U and Error ∼ X, then the
above operation will be like UX1 = UX1U

†U = X1X2U where the error
propagates from X1 to X1X2. So, encoded gates should be designed very
carefully so that less amount of error is propagated. Suppose, the CNOT
gate is itself noisy. Let’s take operation implemented by noisy CNOT
is E and the operation implemented by perfect CNOT is U . E can be
then written as E = EU−1U . So, the operation of noisy CNOT can be
approximated as EU−1 on perfect CNOT.

2. Error Correction itself can produce errors on the encoded qubit.

Figure 42: Block diagram of a Fault-Tolerant process

• Concatenated Code and Threshold Theorem

Suppose we have two levels of concatenation. If the failure probability of the
components at a lower level is ‘P ’. After one level of encoding, it will be
P → cP 2. After two levels of encoding it will be cP 2 → c(cP 2)2. Now, if we
concatenate it K times, the maximum failure probability is (cP )2K/c. Whereas
the size of simulating circuit goes like dK times the size of the actual circuit.
But that’s okay as O(dK) << O((cP )2K ). Now, if we want to simulate a
circuit containing P (n) gates, (P (n) is polynomial of n) we want to achieve an
accuracy of ε in our simulator. Each gate in the simulator must be accurate
to ε/P (n). So, the failure probability is less than the accuracy of each gate.

If we concatenate that K times then (cP )2
K

c
≤ ε

P (n)
, provided P < Pth =

1/c [After one level of encoding P → cP 2, if P < 1/c then cP 2 < P and
that’s an achievement]. This is known as Threshold Condition for Quantum
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Computer. A quantum circuit containing P (n) gates may be simulated with
probability of error at most ε usingO(Poly(logP (n)/ε)P (n)) gates on hardware
whose components fail with probability at most P , given P < Pth.

Parallel operations are also very important. Without this threshold after some
time errors accumulate in the circuit too quickly which we can’t correct. So, a
continuous fresh source of qubits is also needed.

• Fault Tolerant Quantum Logic Gates

For Stean code Z̄ = Z1Z2Z3Z4Z5Z6Z7 and X̄ = X1X2X3X4X5X6X7. Now
as HZH† = X,HXH† = Z, the encoded H̄ = H1H2H3H4H5H6H7 must be
conjugate with Z̄ and X̄ too. So, H̄Z̄H̄† = X̄, H̄X̄H̄† = Z̄.

If Z error occurs on any one qubit i.e. HZ = HZH†H = XH, it’s like
applying Hadamard gate first and then the occurrence of X error. So, the
error doesn’t propagate. Error on one qubit remains on one qubit and that
we can correct. So, Hadamard gate operation is automatically fault-tolerant.
This bitwise operation is called the ‘Transversality’ property of an encoded
quantum gate. Any bitwise operation by X and Z gate is also fault-tolerant
automatically. For a phase gate S,

S =

(
1 0

0 i

)
.

Here, S̄Z̄S̄† = Z̄, S̄X̄S̄† = −Ȳ [The minus sign can be compensated by Z gate],
where S̄ = S1S2S3S4S5S6S7. So, for S-gate ZS operation to each qubit in the
code effects an encoded phase gate which is transversal and thus fault-tolerant.
Hence, we see H,X,Z, Y, S gates can be made fault tolerant. One more gate
we require to complete the standard set of gates for universal quantum com-
putation is π/8 gate.

Analog computers can’t correct errors. Errors accumulate in continuum space and
Quantum computer has the same feature that made people being skeptical about
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Quantum Error Correction. But errors can be digitalised and there comes the power
of Quantum Computer. To use concatenation code, we need a huge number of
physical qubits to make one logical qubit but they stay across large distances from
each other, so the operations are not local. That’s where surface code comes in,
to make the operations local, the ‘Surface Code’ approach for QEC is taken into
account. For the concatenation code, the threshold is quite high, so the gates must
be ridiculously good whereas, for Surface Code, the threshold is comparatively lower.
So, we don’t need to make the gates too perfect. By looking stabilizer we can tell
what the state is, even if the state is not mentioned explicitly keeping in mind that
the eigenvalue of an operation must be +1. For example, if we have the operation
Z, the state must be |0〉. So Z is the stabilizer for |0〉. If M is a stabilizer of |ψ〉,
then M |ψ〉 = |ψ〉.

16.4 Surface Code

In this section, we will see a very brief introduction of Surface Code. There is more
than one type of way of encoding physical qubits into a logical qubit. Surface code
is one of the popular approaches to building a scalable quantum computer. It was
evolved from a simple model of toric code developed by Alexei Kitaev [17].

One of the advantages of Surface Code, as described by Preskill and his team, is
its tolerance to local errors. They used a stack of layered surfaces to implement the
logical CNOT gate. Though the three-dimensional structure is making it complicated
but they were able to show that the ability to handle the error of the code is almost
3% per clock cycle.

Then Raussendforf and his team showed that the logical CNOT gate can be imple-
mented by braid operation on a single surface, which made it easier a simple. They
also showed that using only one or two-qubit nearest-neighbor gates the tolerance of
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each cycle arrives at the threshold of 0.75%.

In Surface Code, physical qubits are connected by CNOT gates to create one logical
qubit. Due to entanglement and measurement, this logical qubit has a far better
performance than the physical qubit.

Single qubit error can be corrected by applying error-correcting code repeatedly. For
example, an erroneous Z can not be corrected by Z but would only be affected by
an X-measurement. Likewise, an X-error would only affect Z-measurement. So, in
surface code, an error needs to be corrected if it affects the measurement. Thus the
main focus of surface code is to detect error and not correct it.

ẐaẐb X̂aX̂b |ψ〉
+1 +1 (|00〉+ |11〉)/

√
2

+1 −1 (|00〉 − |11〉)/
√

2

−1 +1 (|01〉+ |10〉)/
√

2

−1 −1 (|01〉 − |10〉)/
√

2

In this table, four eigenstates are given with their eigenvalues measured by X̂aX̂b

and ẐaẐb. These are the bell states and form a complete set of two-qubit systems.
For the state |00〉 + |11〉 with eigenvalues (+1,−1), if X̂a error is applied then the
state becomes |10〉+ |01〉 with eigenvalues (−1,+1). Now it can be seen that an X̂b

error would also give the same final state. The final state for Ẑa and Ẑb error is also
the same. So the error can not be distinguished properly while they can be detected.
That’s why a more complex error-correcting code is needed.

The Stabilizers are very important in error correcting codes as they preserve the
quantum state. If M is a stabilizer of |ψ〉 then M |ψ〉 = + |ψ〉 with +1 eigenvalue.
Here X̂aX̂b and ẐaẐb are the stabilizers. These measures the states without changing
the measurement outcome, if the eigenvalue changes to −1, error is assumed to be
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detected.

Figure 43: Grid of a surface code. The blue qubits represent ancilla qubits and the
orange qubits represent data qubits

Figure 44: Z-stabilizer measurement
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Figure 45: X-stabilizer measurement

Fig. (43) is a surface code grid where blue ones are the ancilla qubits and orange
are the data qubits. The data qubits are connected with their neighboring ancilla
qubit with CNOT gates. The picture is more clear in the next two figures. Fig.
(44) shows the Z-measurement that stabilizes the surface code consists of CNOT
gates that target the measurement qubit with four data qubits. Fig. (45) shows X-
measurement that targets the nearest data qubits with ancilla qubit with Hadamard
gates on both sides of the set of CNOTs. This measures qubit in lock-step and
continues to each segment of the entire 2D structure.

16.5 Surface-17 code

In this study, the performance of the Tensor-Network-based approach is studied on
the error model particularly on surface-17 code. The code looks as follows
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Figure 46: Design of surface-17 code

This is defined on a 3× 3 grid with 9 physical qubits. There are four ancilla qubits
for X-stabilizer and four for Z-stabilizer. In this design, red circles are X-qubits,
blue circles are Z-qubits, square orange shapes are data qubits and red and blue
shaded regions are X- and Z-stabilizers respectively. For example, X-ancilla at
(1,−3) measures X(0,2)X(0,4) and Z-ancilla at (3, 1) measures Z(2,0)Z(2,2)Z(4,0)Z(4,2).
The data stores info about logical qubits and ancilla qubits measures the error syn-
drome without disturbing the data qubit. And this is a [9,1,3] quantum code.
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16.6 Experimental Error Models

We are to study the simulation of the error models on Surface-17 code that I have
introduced earlier with tensor-network-based approaches. For this, we have to dis-
cretize the time evolution. This error would be introduced into the simulation.
Though the errors are significant, but still sufficiently okay to understand the effects
of crosstalk. We will first see the different error models.

16.6.1 Idle Error

When no gate is applied on a qubit, that idling qubit can still undergo an error which
is called Idle error. It consists two components:

• Amplitude damping

A system A whose ground state is |0〉A & excited state is |1〉A which can emit
a photon to environment and relax to ground state.

1. The relaxation takes time ‘t’ with probability pd.

2. Add an ancillary qubit |0〉E which is basically the environment E.

3. Apply a unitary gate such that

U |00〉AE = |00〉AE , U |10〉AE =
√

1− pd |10〉AE +
√
pd |01〉AE (16.1)

(a) U |00〉AE = |00〉AE
(b) U |10〉AE =

√
1− pd |10〉AE +√

pd |01〉AE
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4. Discard ancillary qubit of E.

• Phase damping

This type of damping happens due to the energy which is weaker than the
system energy but stronger than the environment energy. This causes the
qubit to dephase into the computational basis |0〉A , |1〉A. This model can be
simulated following the same steps above.

1. The relaxation takes time ‘t’ with probability pφ.

2. Add an ancillary qubit |0〉E which is basically the environment E.

3. Apply a unitary gate such that

U |00〉AE = |00〉AE , U |10〉AE =
√

1− pφ |10〉AE +
√
pφ |11〉AE . (16.2)

4. Discard ancillary qubit of E.

As the excited states decay exponentially in time. So,

1− pd = e−t/Td , 1− pφ = e−t/Tφ . (16.3)

16.6.2 Unitary Gate Errors

There are two types of gates in the syndrome extraction circuit. The first one is
Ry(±π/2) which is modeled as depolarizing noise which means applying X, Y, and Z
gates errors to the qubits with certain probabilities. The gate-specific error shrinks
the Bloch sphere along the X- and Z-axis by a factor of 1−PXZ and Y-axis by 1−PY .
The second one is the CZ gate, which is modeled as ‘quasi-static’ that means the
phase error on each adjacent qubit pair is constant through time in a single run but
random over multiple runs.
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16.6.3 Measurement Error

In a superconducting quantum device, measurement is taken by introducing photons
into readout resonators. The qubit is then dephased and measurement is taken.
Then the photon is left sometimes, allowing it to deplete from the resonator.

In [18], this error is modeled as a ‘butterfly gate’. They also note that the experi-
mental parameters can be assumed as

• Amplitude -phase damping applies just before and after the measurement hap-
pens instantaneously at the halfway of the measurement.

• The classical output further faces the readout error εRO which is independent
of the outcome.

During the photon depletion period, the amount of photons in the resonator decays
over time but does not decrease to a completely negligible level. The mechanics of
this process is a bit complex, so we just use the expression as follows

p photon = exp

(
2ηα(0) exp (s (tm − tr))

[
e−st

4η2 + s2
[−s sin(2ηt)− 2η cos(2ηt)]

]t2−tr
t1−tr

)
.

(16.4)

Where, tm is the starting of measurement period, tg is the time taken to change the
basis of the state, s and η are constant parameters.
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16.7 Crosstalk modeling

In Quantum Computation, crosstalk or ZZ-coupling between two adjacent idling
qubits is a parasitic error that we try to control at our will but in practice that is
not the case. In this section, we will focus on the crosstalk and crosstalk in circuit
models with different idle errors.

It is not surprise that on superconducting qubit, crosstalk error arises from CZ
interaction and has the form

eik(Z⊗Z) = eik(|00〉〈00|−|01〉〈01|+|10〉〈10|−|11〉〈11|) = eik(−I⊗I+Z⊗I+I⊗Z+4|11〉〈11|). (16.5)

Here, the expression eik(Z⊗Z) is decomposed into four parts where eik is the global
phase and thus we can ignore this. eik(Z⊗I) and eik(I⊗Z) are the one-qubit gates
known as PHASE gates. The last term e4ik(|11〉〈11|) is the CPHASE gate of which the
CZ gate is a special case.

Figure 48: Error model of Surface-17 code implemented in Quantum Circuit
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Here, the circuit model is not exact but this rough approximation is considered
for the sake of simplicity. The strength of the crosstalk is taken to be constant
irrespective of the time and qubit pair. In practice, this actually depends on the
frequency of each qubit, but for an approximated model, it works well. To make the
whole syndrome extraction simple the effect of crosstalk is discretized at the cost of
simulation accuracy. The orange rectangular boxes represent noisy Hadamard gates,
red circles represent idling errors, black diagrams represent gate specific errors and
red dotted lines represent the crosstalk in the circuit.

In this circuit, data qubits are only adjacent to the ancilla qubit and vice versa. Now,
as seen above, this circuit is divided into two regions by Ry(±π/2) for each qubit
pair.

• CZ Regions: In this region CZ gates are calibrated such that crosstalk does
not present in this region while the effect of crosstalk is already taken into
account for the CZ gate itself.

• Measurement Regions: In this region, all the crosstalks are moved to the
same time point - the end of the measurement i.e. just before the next round.
Thus the tensor network for the error model is simplified.

16.8 Simulating the noisy circuit with Tensor Network

In the case of error models, some unitary gates even ‘idle wires’ become non-unitary.
So, it’s a bit different from simulating the ideal Quantum case. But as simulating all
qubit channels is, kind of, same i.e adding ancilla qubit, applying unitary gate and
discarding the ancilla qubit, so it still can be simulated but then we have so many
quantum measurements for the environment and thus it’d take so many samples of
those to get a reliable result.
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Therefore the density approach is considered instead of state vector simulation. The
density matrix still contains all the information about classical randomness for which
it’s not necessary to worry about sampling. This method takes the advantage of a
parallel tensor network algorithm. Each input qubit becomes an order-2 tensor quan-
tum channel is an order-4k tensor when applied to k-qubit. All the edges including
closed and open edges are doubled for the orders of the tensors to be matched.

Some of the above-mentioned tensors represent only pure objects and unitary gates.
However, if a tensor is decomposed into two tensors, one is the complex conjugate
of the other and the connection of those two is the non-pure object in the circuit.
When some tensors are contracted in a network, all closed indices are summed over
one by one. For an open tensor network, some indices can not be summed over.
And as we see in Sec. [16.2], one can contract a network in different ways. So a
contraction order is to be optimized such that the time and space complexities are
reduced. This tensor network-based approach is better than the state vector update
approach regarding efficiency. Though finding the optimal contraction order is an
NP-hard problem and takes exponential time.

16.9 Comparison

There have been a lot of works based on the real-life error models but most of those
were done in sample-based approach where lots of samples are taken after which one
can come to a reliable conclusion. Though every trial may take a relatively short
time, in order to reduce the variance sampling-based approaches usually suffer from
the large number of random trials needed. On the other hand tensor network-based
approach is a single-trial method. Though a single trial takes much more time still
it’s more efficient.

Obviously, the method one should adopt depends on the experiment. There might
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be cases where a sample-based approach is much more feasible. But in this case for
Surface-17 code with real-life error model, tensor network based approach is better.

17 Conclusion

This is an overview of basic error-correcting codes starting from [3,1] repetition code
to the larger lass of error codes i.e. Quantum CSS code. This tells you how one
can understand the syndrome measurement to detect an error and correct them, if
possible, how fidelity gets improved when error-correcting code is applied, and also
a general view on the condition and limitation that an error-correcting code has to
follow to detect and correct error efficiently.

Then a review of tensor network and surface code is studied and a lattice of Rydberg
atom under dipole-dipole interaction is studied by DMRG calculation in JULIA and
it’s seen that depending on the number of Rydberg atoms on the lattice a trend
of energy values can be seen which is depicted in the Fig. (34). Then realistic
approximated error model is realised in the quantum circuit and it’s seen that the
tensor-network-based approach is more efficient than the sample-based approach.
The overview is important for the mutual relation between Tensor Network and
Quantum Error-Correcting Codes which can make a large-scale Quantum Computer
with abilities to perform calculations that a classical computer cannot perform.
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A Description of the JULIA code

A.1 DMRG calculation for 2 × 1 Rydberg atom lattice for

calculating minimum energy value

Julia> let

Ny = 1

Nx = 2

N = Nx*Ny

sites = siteinds("S=1/2", N;

conserve_qns = true)

lattice = square_lattice(Nx, Ny; yperiodic = false)

ampo = AutoMPO()

for b in lattice

ampo .+= (2.63*10^(-29)), "S+",b.s1

ampo .+= (2.63*10^(-29)), "S-",b.s1

ampo .+= 0.5, "S+", b.s1, "S-", b.s2

ampo .+= 0.5, "S-", b.s1, "S+", b.s2

ampo .+= -(2.63*10^(-34)),"Sz", b.s1

end

H = MPO(ampo,sites)

state = [isodd(n) ? "Up" : "Dn" for n=1:N]

psi0 = randomMPS(sites,state,20)
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sweeps = Sweeps(10)

maxdim!(sweeps,20,60,100,100,200,400,800)

cutoff!(sweeps,1E-8)

@show sweeps

energy,psi = dmrg(H,psi0,sweeps)

return

end

sweeps = Sweeps

A.2 Output:

1 cutoff=1.0E-08, maxdim=20, mindim=1, noise=0.0E+00

2 cutoff=1.0E-08, maxdim=60, mindim=1, noise=0.0E+00

3 cutoff=1.0E-08, maxdim=100, mindim=1, noise=0.0E+00

4 cutoff=1.0E-08, maxdim=100, mindim=1, noise=0.0E+00

5 cutoff=1.0E-08, maxdim=200, mindim=1, noise=0.0E+00

6 cutoff=1.0E-08, maxdim=400, mindim=1, noise=0.0E+00

7 cutoff=1.0E-08, maxdim=800, mindim=1, noise=0.0E+00

8 cutoff=1.0E-08, maxdim=800, mindim=1, noise=0.0E+00

9 cutoff=1.0E-08, maxdim=800, mindim=1, noise=0.0E+00

10 cutoff=1.0E-08, maxdim=800, mindim=1, noise=0.0E+00

After sweep 1 energy=-34.556755246332 maxlinkdim=20 maxerr=1.43E-03 time=1.640

After sweep 2 energy=-35.249039532643 maxlinkdim=60 maxerr=2.56E-05 time=3.202

After sweep 3 energy=-35.347114032405 maxlinkdim=100 maxerr=2.41E-05 time=3.582

After sweep 4 energy=-35.349310987151 maxlinkdim=100 maxerr=3.27E-05 time=4.128
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After sweep 5 energy=-35.371386140634 maxlinkdim=200 maxerr=3.58E-06 time=15.958

After sweep 6 energy=-35.374719143140 maxlinkdim=400 maxerr=3.69E-07 time=47.179

After sweep 7 energy=-35.375102171408 maxlinkdim=800 maxerr=2.26E-08 time=86.461

After sweep 8 energy=-35.375110787349 maxlinkdim=800 maxerr=4.63E-08 time=114.327

After sweep 9 energy=-35.375111234217 maxlinkdim=800 maxerr=4.87E-08 time=6607.839

After sweep 10 energy=-35.375111292367 maxlinkdim=800 maxerr=4.93E-08 time=121.445

Here in this above code, I have calculated the Ground State Energy of the lattice
of 2 × 1 (Effectively a chain) Rydberg atoms with dipole-dipole interaction. To
do that, I use the AutoMPO system and DMRG algorithm of ITensor package in
JULIA programming language. The Hamiltonian in Eq. (15.1) is made to undergo
this calculation. At first, we need to write the σix matrix in terms of σi+ and σi−

to conserve the quantity called ‘Quantum Numbers’ in the ITensor package. First I
define the number of particles of spin-1/2 in each direction. Then under the loop,
it’s quite understandable that the Hamiltonian is reproduced. The AutoMPO system
converts the construction of the Hamiltonian MPO. So the Hamiltonian H is defined.

Now moving forward to the DMRG calculation where the inputs are the Hamiltonian
of the system and an initial guess of the ground state psi0. So I initialize the guess of
my ground state. Then I set the number of sweeps as 10 and increase the maximum
MPS bond-dimension gradually from 20 to 800. The DMRG algorithm iterations
(sweeps) will run until it reaches the cutoff 10−8. then we run the DMRG function
which takes the Hamiltonian, initial guess state, and the iteration of the algorithm
as its arguments and stores it in ‘energy’. In the output, the last energy is the lowest
energy of the system after the maximum number of sweeps.

In the next section, the same code is run but for the system of 20× 10 lattice of the
Rydberg system. And thus, all other energies are calculated and plotted in Fig. 34.
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A.3 DMRG calculation for 20 × 10 Rydberg atom lattice for

calculating minimum energy value

julia> let

Ny = 10

Nx = 20

N = Nx*Ny

sites = siteinds("S=1/2", N;

conserve_qns = true)

lattice = square_lattice(Nx, Ny; yperiodic = false)

ampo = AutoMPO()

for b in lattice

ampo .+= (2.63*10^(-29)), "S+",b.s1

ampo .+= (2.63*10^(-29)), "S-",b.s1

ampo .+= 0.5, "S+", b.s1, "S-", b.s2

ampo .+= 0.5, "S-", b.s1, "S+", b.s2

ampo .+= -(2.63*10^(-34)),"Sz", b.s1

end

H = MPO(ampo,sites)

state = [isodd(n) ? "Up" : "Dn" for n=1:N]

psi0 = randomMPS(sites,state,20)

sweeps = Sweeps(10)

maxdim!(sweeps,20,60,100,100,200,400,800)
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cutoff!(sweeps,1E-8)

@show sweeps

energy,psi = dmrg(H,psi0,sweeps)

return

end

sweeps = Sweeps

A.4 Output

1 cutoff=1.0E-08, maxdim=20, mindim=1, noise=0.0E+00

2 cutoff=1.0E-08, maxdim=60, mindim=1, noise=0.0E+00

3 cutoff=1.0E-08, maxdim=100, mindim=1, noise=0.0E+00

4 cutoff=1.0E-08, maxdim=100, mindim=1, noise=0.0E+00

5 cutoff=1.0E-08, maxdim=200, mindim=1, noise=0.0E+00

6 cutoff=1.0E-08, maxdim=400, mindim=1, noise=0.0E+00

7 cutoff=1.0E-08, maxdim=800, mindim=1, noise=0.0E+00

8 cutoff=1.0E-08, maxdim=800, mindim=1, noise=0.0E+00

9 cutoff=1.0E-08, maxdim=800, mindim=1, noise=0.0E+00

10 cutoff=1.0E-08, maxdim=800, mindim=1, noise=0.0E+00

After sweep 1 energy=-97.230274525055 maxlinkdim=20 maxerr=2.64E-03 time=15.100

After sweep 2 energy=-100.359663404246 maxlinkdim=60 maxerr=1.03E-04 time=4.454

After sweep 3 energy=-101.477698578037 maxlinkdim=100 maxerr=2.56E-04 time=9.086

After sweep 4 energy=-101.727665081697 maxlinkdim=100 maxerr=3.29E-04 time=9.214

After sweep 5 energy=-102.364420408849 maxlinkdim=200 maxerr=7.43E-05 time=28.079

After sweep 6 energy=-102.631739108426 maxlinkdim=400 maxerr=2.53E-05 time=107.104
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