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Abstract

Quantum Computation techniques have been used to solve the Deuteron problem

namely to obtain the eigenstates and eigenvalues of the groundstate of Deuteron and

other molecules. Encoding schemes JWT are discussed to convert the Hamiltonian

into sum weighted Pauli matrices. Quantum algorithm VQE, is explored to obtain

the desired properties. These algorithms are created such that it can be used to any

nuclear many-body physics problems.
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Chapter 1

Introduction to Quantum

Computation

The use of quantum mechanics’ superposition, interference, and entanglement in com-

putation processes is known as quantum computing. Quantum computers are equip-

ment used for doing quantum calculations. Although current quantum computers

are too small to perform better than conventional (classical) computers for practical

applications, larger realisations are thought to be capable of solving some computa-

tional problems, such as integer factorization (which is the basis of RSA encryption),

significantly faster than conventional computers. Quantum information science in-

cludes the study of quantum computing as a discipline.

The fundamental units of information in classical computation are bits, which have

a state space limited to the binary values ”0” and ”1.” In contrast, the fundamental

units of information in quantum computation are qubits, each of which is a two-

dimensional Hilbert space, and which, because they are quantum mechanical objects,

can remain even in a superposition of the two states. As seen in Figure 1 Figure 7.1,

a qubit state can be seen on a Bloch sphere. On the Bloch sphere, a qubit is capable

of existing in any state (i.e., at any position on the surface of the sphere).

The evolution of bits are governed by logical operators like OR, AND and XOR gates

and the evolution of qubits are carried out by unitary operators called gates. These

operators preserve norm of the states.
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If the choice of basis states are,

|0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
(1.1)

then the state represented Fig. 1(a) can be written as |ψ⟩ = 1√
2

(
|0⟩+ e

iπ
2 |1⟩

)
then

the state represented Fig. 1(a) can be written as |ψ⟩ a general state can be written as

|ψ⟩ = a|0⟩+ b|1⟩〉. If there multiple qubits describing the system then the combined

state of the system is written as |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ |ψ3⟩ ⊗ |ψ4⟩ ⊗ .... where |ψi⟩ are
individual system states.

Figure 1.1: Qubit represented on a Bloch sphere, one qubit(a), multiple qubits(b)

Some of the gates frequently used are :

Pauli spin matrices

X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
(1.2)

Hadamard gate :

H =
1√
2

[
0 1
1 0

]
(1.3)
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Rotation gates :

Rx(2θ) =

[
cos(θ) −i sin(θ)

−i sin(θ) cos(θ)

]
Ry(2θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
Rz(2θ) =

[
e−iθ 0
0 eiθ

]
(1.4)

A quantum algorithm that we use are some sets of quantum operations on the qubits

followed by measurement, represented by a quantum circuit(Fig. 2)Figure 1.2, and

then some post-processing of the measurement results.

Figure 1.2: An example of a Quantum Circuit
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Chapter 2

Introduction to VQE

One of the leading quantum chemistry algorithms for use with near-term quantum

computers is the Variational Quantum Eigensolver (VQE). A quantum computer is

trained to prepare the ground state of a specific molecule in this application of the

Quantum variational principle.[8]

The variational quantum eigensolver (VQE) is a technique for determining a Hamilto-

nian’s eigenvalues using a hybrid quantum-classical computing methodology. Quan-

tum phase estimation is one of the completely quantum algorithms that has been

suggested as an alternative to VQE since QPE requires quantum hardware that won’t

be available anytime soon. The electronic Schrodinger equation has been successfully

solved using VQE for a number of tiny molecules. The intricacy of the quantum

circuits and the complexity of the conventional optimization issue, however, are what

prevent this technology from scaling up. The variational ansatz used to describe the

trial wave function has an impact on both of these elements. Consequently, the de-

velopment of an effective ansatz is a current research topic. In other words, deep

quantum circuits created by employing currently available ansatzes for problems that

map into more than a few qubits cannot be executed by existing quantum computers.

A molecular Hamiltonian and a parametrized circuit that prepares the molecule’s

quantum state are the inputs to the VQE algorithm. The expectation value of the

Hamiltonian calculated in the trial state is the definition of the cost function in VQE.

By iteratively minimizing the cost function, the target Hamiltonian’s ground state is
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discovered. A classical optimizer performs the optimization using a quantum com-

puter to analyze the cost function and determine its gradient at each optimization, a

classical optimizer performs the optimization step.

Finding a series of quantum operations that prepares the lowest energy state (or min-

ima) of an approximate representation of a target quantity or observable is the goal of

the VQE. Even if the efficiency of estimating an observable’s expectation values is the

only strict condition for its representation, it is frequently the easiest if that operator

has a compact or simple expression in terms of Pauli operators or tensor products of

Pauli operators. It is frequently most practical to qubitize a fermionic system, which

entails writing the system’s many-body Hamiltonian using second quantization before

employing a mapping to express the creation-annihilation operators in terms of Pauli

operators. Jordan-Wigner transformation [7] is one of the often used fermion schemes.

Although these concepts appear appealing in principle, the processing power of the

tiny quantum devices now in use, also known as NISQ (noisy intermediate-scale quan-

tum) devices, is severely constrained. The inefficiency of current quantum algorithms,

which are frequently addressed in terms of the quantum advantage, with regard to

the resources required to solve any worthwhile issue on a quantum computer quicker

than on a conventional computer is a second crucial factor. For instance, it is antic-

ipated that the resources needed to do computations on the chromium dimer, a big

enough chemical system to show the quantum advantage on a quantum computer,

would require at least 1 million physical qubits, or 60 high-fidelity qubits. However,

in order for error correction algorithms to function, these physical qubits must be

more accurate than ones now in use. This is a long way from the physical quantum

computers that are now accessible, and it will continue to be that way for a while.
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2.1 VQE Overview

Figure 2.1: VQE Procedure flowchart
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Chapter 3

Future Scope of VQE

The variational quantum eigensolver (or VQE), which Peruzzo et al. initially pro-

posed in 2014, has drawn a lot of interest from the scientific community lately. It com-

putes the ground state energy of a Hamiltonian, an issue that is crucial to quantum

chemistry and condensed matter physics, using the variational principle. Due to the

computational constraints placed on accurate modelling of the electronic wavefunc-

tion for these many-electron systems, conventional computing approaches are limited

in their accuracy. One of the most intriguing near-term applications for quantum

computing is the use of the VQE to describe these complicated wavefunctions in

polynomial time. The fact that variational algorithms have some degree of tolerance

to the noise in the quantum hardware is a significant benefit.

Finding a way to traverse the pertinent literature has quickly turned into an in-

timidating undertaking because there are so many approaches promising to improve

various aspects of the algorithm but without detailed explanations of how the various

components work together. The literature also extensively discusses the algorithm’s

possible practical benefits, although it comes to different conclusions. Strong theoret-

ical foundations for great scaling of individual VQE components have been suggested,

however tests have shown that their different pre-factors may be too high to achieve

a quantum computing advantage over traditional approaches.

This project tries to deconstruct the pertinent literature to offer a thorough overview

of the advancements achieved on the various components of the algorithm and to

propose upcoming research topics that are essential for the VQE to live up to its po-

tential. A thorough evaluation of the algorithm’s various parts is conducted. These
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include the representation of Hamiltonians and wavefunctions on a quantum com-

puter, the search for ground state energies through optimization, the correction of

quantum faults in the post-processing stage, and recommended best practises.

The paths for the VQE to attain quantum advantage as the quantum computing

hardware grows up and as the noise levels are decreased will be determined by the

responses to these open research issues.

Some researchers have attempted to estimate the tipping point for quantum computing-

based quantum chemistry to overtake conventional methods. As one example, Elfving

et al [4]. estimate the size of basis set (and hence the number of qubits) that would

be required for a tangible quantum advantage of quantum computing based methods

to lie somewhere between 19 and 34 molecular orbitals (or twice as many spin orbitals

and hence twice as many qubits).
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Chapter 4

Variational principle in Quantum

Mechanics

The variational technique is one strategy to approximate the ground state with

the lowest energy and some stimulated states in quantum mechanics. This makes it

possible to calculate approximations of wavefunctions, like molecular orbitals. The

variational concept serves as the method’s foundation.

The technique involves selecting a ”trial wavefunction” based on one or more pa-

rameters and identifying the values of these parameters that result in the energy

expectation value being as low as possible. By setting the parameters to these values,

a wavefunction that approximates the ground state wavefunction is produced, and the

energy in that state’s expectation value serves as an upper constraint on the ground

state energy.

Assume we are given a Hilbert space and the Hamiltonian H (Hermitian operator).

We analyse the discrete spectrum of H and a basis of eigenvectors called |ψλ⟩,
disregarding difficulties with continuous spectra.

⟨ψ1|ψ2⟩ = δ12, Where δij =

{
1, if i = j,

0, if i ̸= j.
(4.1)

and [|ψλ⟩] satisfies the equation,

H|ψλ⟩ = λ|ψλ⟩ (4.2)
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Let’s assume that the spectrum of H is constrained from below and that its highest

lower bound is E0, once more ignoring the complexities associated with a continuous

spectrum of H. The value of H’s expectation in state |ψλ⟩ is then,

⟨ψ|H |ψ⟩ =
∑

λ1,λ2∈Spec(H)

⟨ψ|ψλ1⟩ ⟨ψλ1|H |ψλ2⟩ ⟨ψλ2|ψ⟩

=
∑

λ∈Spec(H)

λ |⟨ψλ|ψ⟩|2 ≥
∑

λ∈Spec(H)

E0 |⟨ψλ|ψ⟩|2 = E0⟨ψ|ψ⟩.

(4.3)

The lowest value would be E0, and the corresponding state would be an eigenstate

of E0, if we were to vary across all feasible states with norm 1 while attempting to

minimise the expectation value of H. Since physical computations typically require

varying throughout the whole Hilbert space, a subspace of the complete Hilbert space

is chosen and parametrized by some (real) differentiable parameters αi (i = 1, 2,...,

N). The ansatz is this selection of the subspace. The choice of ansatz is crucial since

some choices produce better approximations than others.

Assume that the ansatz and the ground state overlap somewhat (otherwise, the ansatz

is flawed). We want to make the ansatz normal following the constraint

⟨ψα|ψα⟩ = 1 (4.4)

and we want to minimize

ϵ(α) = ⟨ψα|H|ψα⟩ (4.5)
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In general,

We construct the functional for a hamiltonian H that characterises the investigated

system and any normalizable function with arguments suitable for the unidentified

wave function of the system :

ϵ [Ψ] =
⟨Ψ| Ĥ |Ψ⟩
⟨Ψ|Ψ⟩

(4.6)

According to the variational principle,

1. ϵ ≥ E0 where E0 is the ground state eigenvalue

2. ϵ = E0 if and only if ψ precisely equals the ground state wave function of the

examined system.

The variational approach used in quantum chemistry and quantum mechanics to

locate approximations to the ground state is based on the variational principle[5]

mentioned above.

11



Chapter 5

Nuclear physics to Quantum

Computation problem

5.1 The Nuclear Hamiltonion

The ultimate objective of computational quantum chemistry is to fully understand the

quantum effects that affect the structure and characteristics of molecules. Since the

characteristic energies linked to these phenomena, such as the electronic correlation

energy, are often a very small portion of the molecule’s overall energy, achieving this

aim is difficult.

The wave function that describes how the interacting electrons in a molecule interact

may be used to calculate precise chemical characteristics. The Schrödinger equation

is satisfied by the electronic wave function ψ(r).

Heψ(r) = Eψ(r) (5.1)

where He and E are the molecule’s total energy and electronic Hamiltonian, respec-

tively.

The Hamiltonian can be defined as :

Ĥ = K̂N + K̂e + V̂NN + V̂eN + V̂ee (5.2)

where we have decomposed the kinetic energy operator into nuclear and electronic
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terms, KN and Ke, as well as the potential energy operator into terms representing

the interactions between nuclei, VNN , between electrons, Vee, and between electrons

and nuclei, VeN .

K̂N = −
nuclei∑

i

ℏ2

2Mi

∇2
Ri

K̂e = −
electrons∑

i

ℏ2

2me

∇2
ri

V̂NN =
∑
i

∑
j>i

ZiZje
2

4πε0 |Ri −Rj|

V̂eN = −
∑
i

∑
j

Zie
2

4πε0 |Ri − rj|

V̂ee =
∑
i

∑
i<j

e2

4πε0 |ri − rj|

(5.3)

The nuclei of the molecule can be regarded as point particles with fixed coordinates

when resolving the latter equation (Born-Oppenheimer approximation) [2]. Both the

total energy and the electronic Hamiltonian are parametrically dependent on the nu-

clear coordinates in this approximation. So the Hamiltonian changes to a form;

Ĥ = K̂e + V̂NN + V̂eN + energy shift (5.4)

which then it becomes exactly,

Ĥ =
∑
i,j

1

2
⟨i|∇2

i |j⟩a
†
iaj +

∑
i,j

⟨i|ZA

riA
|j⟩a†iaj +

∑
i,j,k,l

⟨i, j| 1
rij

|k,m⟩a†iajakam (5.5)

This Hamiltonian is further simplified using the second quantization formalism which

is explained below.
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The second-quantization formalism, which we shall examine in further depth in the

following section, is frequently used to express the electronic Hamiltonian of the

molecule. A base of single-particle states must be selected to achieve this goal. These

states, known as molecular orbitals in quantum chemistry, explain the wave function

of a single electron in a molecule.

Ordinarily, atomic orbitals are combined in a linear fashion to represent molecular

orbitals. Using the Hartree-Fock (HF) technique, the expansion coefficients in the

atomic basis are determined. The HF approximation treats each electron in the

molecule as a separate particle that travels in response to the nuclei’s Coulomb po-

tential and a mean field created by all the other electrons.

The second-quantized Hamiltonian can only be constructed using the optimised co-

efficients.

5.1.1 Second Quantization

The formalism known as second quantization, sometimes known as occupation num-

ber representation, is used to define and examine quantum many-body systems.

Canonical quantization is a method used in quantum field theory in which the fields

are viewed as field operators, much as how the physical variables (such as location,

momentum, etc.) are viewed as operators in first quantization. The fields are often

viewed as the wave functions of matter. Paul Dirac established the main concepts of

this approach in 1927 [3]. According to this method, the quantum many-body states

are represented in the Fock state basis, which is created by packing a specific number

of identical particles into each single-particle state.

The creation and annihilation operators are introduced in the second quantization for-

malism to build and manage the Fock states, giving researchers studying the quantum

many-body theory important tools.

5.1.2 Second Quantized fock states

Because the language of first quantization is redundant for indistinguishable parti-

cles, first quantized wave functions require challenging symmetrization processes to

represent physically feasible many-body states. The many-body state is described

14



in the first quantization language by responding to a series of queries like ”Which

particle is in which state?” However, since the particles are similar, it is impossible

to determine which particle is which in the first place, hence these are not physical

problems. The quantum many-body states ψ1 ⊗ ψ2 and ψ2 ⊗ ψ1, which appear to be

distinct, are essentially the same thing under various labels. To get rid of this repeti-

tion in the initial quantization description, symmetrization (or anti-symmetrization)

must be used.

|[nα]⟩ ≡ |n1, n2, · · · , nα, · · · ⟩ (5.6)

implying that there are nα particles in the single-particle state, which is represented

by the display style |α⟩ (or as |ψα⟩).∑
α nα = N shows that the occupation numbers add up to the total number of par-

ticles. Because of the Pauli exclusion principle, the occupation number for fermions

may only be 0 or 1, although for bosons it can be any non-negative integer.

nα =

{
0, 1 fermions,

0, 1, 2, 3, ... bosons.
(5.7)

Fock states are another name for the occupation number states. The many-body

Hilbert space, often known as the Fock space [1], is completely based on all of the

Fock states. A linear collection of Fock states may be used to express any generic

quantum many-body state.

5.2 Hamiltonion in action

In general the electronic hamitonion is written as :

H =
∑
ij

hija
†
iaj +

∑
ijkl

hijkla
†
ia

†
jakal (5.8)

Where hij and hijkl satisfy the needs of electron-nuclear repulsion term and electron-

electron repulsion terms respectievly.

Where,

hij ≡
∫
dxχ∗

i (x)

(
−1

2
∇2 −

∑
α

Zα

rα,x

)
χj(x) (5.9)
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hijkl ≡
∫
dx1dx2

(
χ∗
i (x1)χ

∗
j(x2)χk(x2)χl(x1)

r1,2

)
(5.10)

(hij is one-body integral and hijkl is a two-body intergral).

In this project we simulated Hamiltonian(for Deutron, there will not be hijkl) term

H written in second quantization form as [6] :

H =
∑
ij

hija
†
iaj (5.11)

where hij = ⟨i|T̂ + V̂ |j⟩ While a†iaj are assessed using quantum algorithms, hij are

estimated using traditional methods. The Kinetic energy terms and the Potential

terms make up the Hamiltonian for a straightforward nuclear system. The Kinetic

Energy operator is given in Harmonic Oscillator Basis by:

⟨n′l′|T̂ |nl⟩ = ℏω
2

[
(2n+ l +

3

2
)δnn

′ −
√
n(n+ l +

1

2
)δn

′+1
n −

√
(n+ 1)(n+ l +

3

2
)δn

′−1
n

]
δl

′

l

(5.12)

where n(n) = 0, · · · , N − 1 is the radial quantum number of the harmonic oscillator

basis with N determining the size of the basis, and l(l′) is the orbital angular mo-

mentum. For the case of the deuteron with l = 0,

Equation 5.12 becomes:

⟨n′l′|T̂ |nl⟩ = ℏω
2

[
(2n+

3

2
)δnn

′ −
√
n(n+

1

2
)δn

′+1
n −

√
(n+ 1)(n+

3

2
)δn

′−1
n

]
(5.13)

The matrix element of potential terms for a Nuclear Hamiltonian depends upon the

choice of potential, and for this project we consider,

EFT Potential : The matrix element for EFT potential is given by

⟨n′|v|n⟩ = V0δ
n′

n δ
0
n′ (5.14)

where the choice of coefficient V0 = −5.68658111 MeV for Deutron.
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5.3 Mapping the Hamiltonion to physical Qubits

5.3.1 Jordan-Wigner Mapping

Note that the occupation basis, also known as the occupancy basis, is formed by using

n qubits to store the occupation number of n electronic spin-orbitals. The associated

ith qubit is in the |1⟩ state if the ith molecular orbital is occupied. While the qubit is

in the |0⟩ state if the molecular orbital is vacant.

We need to map fermionic operators onto operators that act on physical qubits which

can be done using Jordan-weigner transformation [7].

Qubits are manipulated by quantum computers via Pauli matrix-based operations

(denoted as Xq, Yq, and Zq on qubit q). The Jordan-Wigner transformation can

transfer the deuteron generation and annihilation operators onto Pauli matrices.

The transformations are as follows :

a†n → 1

2

[
n−1∏
j=0

−Zj

]
(Xn − iYn) (5.15)

an → 1

2

[
n−1∏
j=0

−Zj

]
(Xn + iYn) (5.16)

Note that this mapping requires O(N) qubit operations to simulate one electronic

operation.
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Chapter 6

The Variational Quantum

Eigensolver

6.1 Variational Ansatz

To use the variational technique on a quantum computer, the ansatz must be varied

in a methodical way. Using a parameterized circuit with a fixed shape, VQE accom-

plishes this. Such a circuit is sometimes referred to as a variational form, and the

linear transformation U(θ) may be used to model its activity. A beginning state |ψ⟩
(such as the Hartree Fock state or the vacuum state |0⟩) is subjected to a variational

form, which produces an output state |ψ(θ)⟩. An anticipated value of minimum is

what iterative optimization over |ψ(θ)⟩ seeks to produce. Although in reality effective

bounds on expectation value

⟨ψ(θ)|H|ψ(θ)⟩ ≈ Egs ≡ λmin (6.1)

can be determined even if this is not the case, |ψ(θ)⟩ will ideally be near to |ψmin⟩
(where ”closeness” is described by either state fidelity, or Manhattan distance).

Two competing objectives must be balanced while creating a variational form. Our

n qubit variational form would ideally be able to create any feasible state |ψ⟩ where
|ψ⟩ is an element of N = 2n dimensional complex hilbert space. The variational form

should, however, utilise as few parameters as feasible.
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About the purpose of simplicity, we will ignore the second goal and instead focus on

providing intuition for how to design variational forms that meet our first goal.

6.2 Parameter Optimization

Following the variational method’s selection of an efficiently parameterized variational

form, its parameters must be tuned to reduce the target Hamiltonian’s expectation

value. There are many difficulties in the parameter optimization procedure. For

instance, the noise present in quantum hardware may affect the assessment of the

objective function (energy calculation), which may not accurately reflect the goal

function. Additionally, depending on the cardinality of the parameter set, certain

optimizers carry out a number of objective function evaluations. The needs of an

application should be taken into account while choosing a suitable optimizer.

Gradient descent is a well-known optimization technique where each parameter is

updated in the direction resulting in the highest local change in energy. As a result,

the quantity of evaluations carried out relies on the presence of optimization factors.

As a result, the algorithm can scan the search space fast for a local optimum. The

number of circuit evaluations required by this optimization approach is quite high,

and it frequently stalls at subpar local optima. It is a simple optimization technique,

however it is not suggested for VQE.

The classical optimizers used in this project is mainly, SPSA, SLSQP,and COBYLA.

The Simultaneous Perturbation Stochastic Approximation optimizer(SPSA) is a suit-

able optimizer for optimising a noisy objective function. With just two measurements,

SPSA may estimate the gradient of the goal function. In contrast to gradient descent,

which perturbs each parameter separately, it accomplishes this by simultaneously per-

turbing all of the parameters in a random manner. The classical optimizer SPSA is

advised when using VQE in a noisy simulator or on actual hardware.

Numerous classical optimizers may be helpful when noise is not present in the cost

function evaluation (such as when utilising VQE with the statevector simulator).

The Sequential Least Squares Programming optimizer (SLSQP) and the Constrained
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Optimization by Linear Approximation optimizer are two examples of optimizers that

Qiskit Aqua supports (COBYLA). It is important to note that COBYLA only does

one evaluation of the objective function during each optimization iteration (and that

the number of evaluations is thus independent of the cardinality of the parameter

set). Therefore, it is advised to use COBYLA if the goal function is noise-free and

decreasing the number of completed evaluations is desired.

6.3 Various Quantum Algorithms

Algorithm Acronym
VQE Variational Quantum Eigensolver
QFT Quantum Fourier Transform
QPE Quantum Phase Estimation
DJ Deutsch Josza algorithm

QKD Quantum Key Distribution
HHL Harrow-Hassidim-Lloyd quantum algorithm
QOA Quantum Optimization Algorithm
QAOA Quantum Approximate Optimization Algorithm
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Chapter 7

VQE Results for Deutron

7.1 The Deutron

Figure 7.1: Deuterium Atom

Deuterium is one of two stable isotopes of hydrogen (the other being protium, or

hydrogen-1). The nucleus of a deuterium atom, called a Deuteron, contains one

proton and one neutron, whereas the far more common protium has no neutrons in

the nucleus.

7.2 Simulator results

Reference value of ground state = -1.749
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7.2.1 User defined Ansatz

1. SLSQP Results : -0.6921 for qasm simulator and -1.74916 from statevector

simulator

2. COBYLA Results : -1.6341 for qasm simulator and -1.74916 from statevector

simulator

3. SPSA Results : -2.012 for qasm simulator and -1.74916 from statevector sim-

ulator

7.2.2 QISKIT inbuilt Ansatz

1. SLSQP Results : +0.1908 for qasm simulator and -1.74916 from statevector

simulator

2. COBYLA Results : -0.8438 for qasm simulator and -1.74915 from statevector

simulator

3. SPSA Results : -1.7607 for qasm simulator and -0.1909 from statevector sim-

ulator
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7.3 Why QASM and statevector simulators giving

different results?

statevector-simulator keeps track of the state vector itself. When asking about the

measurement probability, it would corresponds to the abs square of the amplitudes.

qasm-simulator is similar to how things work on a hardware. You do not have

access to the state vector, and you have to specify the number of shots. Each shot

represent a sample in the measurement space. So the measurement probability would

be the distribution of the samples.

The QASM Simulator is the main Qiskit Aer backend. This backend emulates

execution of a quantum circuits on a real device and returns measurement counts. It

includes highly configurable noise models and can even be loaded with automatically

generated approximate noise models based on the calibration parameters of actual

hardware devices.

The Statevector Simulator is an auxiliary backend for Qiskit Aer. It simulates

the ideal execution of a quantum circuit and returns the final quantum state vector

of the device at the end of simulation. This is useful for education, as well as the

theoretical study and debugging of algorithms.
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Appendix A

Ground state of Deutron

Code for running in IBMQ simulators

import numpy as np

import pylab

from qiskit import *

from qiskit.utils import QuantumInstance, algorithm_globals

from qiskit.algorithms import VQE, NumPyMinimumEigensolver

from qiskit.algorithms.optimizers import SLSQP, SPSA, COBYLA, L_BFGS_B

from qiskit.circuit.library import TwoLocal

from qiskit.opflow import I, X, Z, Y

from qiskit.providers.aer import QasmSimulator

'''

This is the Hamiltonion of Deuterium molecule first created using

ladder operators then used dyson series and finally transformed to this form

using Jorden-wigner like methods. (Which is available online for free)

https://journals.aps.org/prc/pdf/10.1103/PhysRevC.104.034301

'''

H2_op = (5.906709 * I ^ I) + \

(0.218291 * Z ^ I) - \

(6.125 * I ^ Z) - \

(2.143304 * X ^ X) - \

(2.143304 * Y ^ Y)
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#Classical eigen value calculation of the operator

npme = NumPyMinimumEigensolver()

result = npme.compute_minimum_eigenvalue(operator=H2_op)

# The classical solution to the problem

ref_value = result.eigenvalue.real

print(f'Reference value: {ref_value:.5f}')

# Creating user defined ansatz:

from qiskit.circuit import Parameter

theta = Parameter('theta')

ansatz_1 = QuantumCircuit(2)

ansatz_1.x(0)

ansatz_1.ry(theta, 1)

ansatz_1.cx(1,0)

ansatz_1.draw('mpl')

# 'TwoLocal' ansatz

'''

This is an ansatz creation method which is inbuilt in qiskit

'''

ansatz_2 = TwoLocal(rotation_blocks='ry',

entanglement_blocks='cz', reps = 1)

# Just for testing purpose

ansatz_2.draw('mpl')

#Using different combinations of optimizers and simulators

to compare for a given ansatz

optimizers = [COBYLA(maxiter=80),

SLSQP(maxiter=60), SPSA(maxiter = 60)]

# maxiter is the maximum number of function evaluations
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simulators = ['statevector_simulator', 'qasm_simulator']

# To verify the results before going with Real backends

# Looping for the above lists and printing out

the results for 'ansatz_1' using VQE.

for i, optimizer in enumerate(optimizers):

for j, simulator in enumerate(simulators):

vqe = VQE(ansatz_1, optimizer,

quantum_instance=QuantumInstance(backend=Aer.get_backend(simulator)))

result= vqe.compute_minimum_eigenvalue(operator=H2_op)

print('For optimzer :', optimizer, 'and simulator : '

, simulator, end = '\n')

print('Eigen value : ', result.eigenvalue, end ='\n')

print('Eigen Value : ', result.eigenvalue, end ='\n')

print('Optimal Value : ', result.optimal_value, end ='\n')

print('Optimizer Time : ', result.optimizer_time, end ='\n')

print(end = '\n\n\n')

Results for Ansatz1 :

For optimzer : qiskit.algorithms.optimizers.cobyla.COBYLA and simulator : stat-

evector simulator

Eigen value : (-1.7491611969643985+0j)

Eigen Value : (-1.7491611969643985+0j)

Optimal Value : -1.7491611969643985

Optimizer Time : 0.06676125526428223

For optimzer : qiskit.algorithms.optimizers.cobyla.COBYLA and simulator : qasm

simulator

Eigen value : (-1.6341610019531272+0j)

Eigen Value : (-1.6341610019531272+0j)

Optimal Value : -1.6341610019531272

Optimizer Time : 4.25739860534668
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For optimzer : qiskit.algorithms.optimizers.slsqp.SLSQP and simulator : statevector

simulator

Eigen value : (-1.7491609341971766+0j)

Eigen Value : (-1.7491609341971766+0j)

Optimal Value : -1.7491609341971766

Optimizer Time : 0.0207979679107666

For optimzer : qiskit.algorithms.optimizers.slsqp.SLSQP and simulator : qasm simu-

lator

Eigen value : (-0.6921057597656253+0j)

Eigen Value : (-0.6921057597656253+0j)

Optimal Value : -0.6921057597656253

Optimizer Time : 9.577551364898682

For optimzer : qiskit.algorithms.optimizers.spsa.SPSA and simulator : statevector

simulator

Eigen value : (-1.7491612220155874+0j)

Eigen Value : (-1.7491612220155874+0j)

Optimal Value : -1.7491612220155874

Optimizer Time : 0.6750929355621338

For optimzer : qiskit.algorithms.optimizers.spsa.SPSA and simulator : qasm simula-

tor

Eigen value : (-2.012054529296875+0j)

Eigen Value : (-2.012054529296875+0j)

Optimal Value : -2.012054529296875

Optimizer Time : 26.068110466003418

Ansatz 2 :

# Looping for the above lists and printing out the results

for 'ansatz_2'using VQE.

for i, optimizer in enumerate(optimizers):

for j, simulator in enumerate(simulators):

vqe = VQE(ansatz_2, optimizer, quantum_instance=

QuantumInstance(backend=Aer.get_backend(simulato)))
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result= vqe.compute_minimum_eigenvalue(operator=H2_op)

print('For optimzer :', optimizer,

'and simulator : ', simulator,end= '\n')

print('Eigen value : ', result.eigenvalue, end ='\n')

print('Eigen Value : ', result.eigenvalue, end ='\n')

print('Optimal Value : ', result.optimal_value, end ='\n')

print('Optimizer Time : ', result.optimizer_time, end ='\n')

print(end = '\n\n\n')

Results for Ansatz2 :

For optimzer : qiskit.algorithms.optimizers.cobyla.COBYLA and simulator : stat-

evector simulator

Eigen value : (-1.7491595305589742+0j)

Eigen Value : (-1.7491595305589742+0j)

Optimal Value : -1.7491595305589742

Optimizer Time : 0.6761023998260498

For optimzer : qiskit.algorithms.optimizers.cobyla.COBYLA and simulator : qasm

simulator

Eigen value : (-0.8438329082031251+0j)

Eigen Value : (-0.8438329082031251+0j)

Optimal Value : -0.8438329082031251

Optimizer Time : 20.155860900878906

For optimzer : qiskit.algorithms.optimizers.slsqp.SLSQP and simulator : statevector

simulator

Eigen value : (-1.7491611621259546+0j)

Eigen Value : (-1.7491611621259546+0j)

Optimal Value : -1.7491611621259546

Optimizer Time : 0.45404982566833496

For optimzer : qiskit.algorithms.optimizers.slsqp.SLSQP and simulator : qasm simu-

lator

Eigen value : (0.19085928320312373+0j)

Eigen Value : (0.19085928320312373+0j)

Optimal Value : 0.19085928320312373

Optimizer Time : 165.09524774551392
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For optimzer : qiskit.algorithms.optimizers.spsa.SPSA and simulator : statevector

simulator

Eigen value : (-0.19090278673387137+0j)

Eigen Value : (-0.19090278673387137+0j)

Optimal Value : -0.19090278673387137

Optimizer Time : 1.391674518585205

For optimzer : qiskit.algorithms.optimizers.spsa.SPSA and simulator : qasm simula-

tor

Eigen value : (-1.7607981054687514+0j)

Eigen Value : (-1.7607981054687514+0j)

Optimal Value : -1.7607981054687514

Optimizer Time : 75.3864676952362
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Appendix B

QISKIT version details

’qiskit-terra’: ’0.22.2’, ’qiskit-aer’: ’0.11.1’, ’qiskit-ignis’: None,

’qiskit-ibmq-provider’: ’0.19.2’, ’qiskit’: ’0.39.2’, ’qiskit-nature’: ’0.5.0’,

’qiskit-finance’: ’0.3.4’, ’qiskit-optimization’: ’0.4.0’, ’qiskit-machine-learning’:

’0.5.0’
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